跳到主要內容

簡易檢索 / 詳目顯示

研究生: 羅亦琥
Yi-hu Lo
論文名稱: 應用放電複合製程之微凹型球面的拋光研究
A study on micro-spherical cavity polishing in micro-EDM hybrid process
指導教授: 顏炳華
Biing-hwa Yan
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 96
語文別: 中文
論文頁數: 90
中文關鍵詞: 微放電加工電泳沉積電解拋光微凹型球面模具
外文關鍵詞: Micro-spherical cavity., Micro-EDM, Electrophoretic deposition, Electropolishing
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在精微加工的領域中,微放電加工法可運用於各種高精密微型模具的製造,但因放電加工時的高溫熔融現象,造成放電加工所製造出的模具表面,具有放電坑與微裂痕等缺陷,嚴重影響微型模具的表面品質。有鑒於此,本研究擬以電泳沉積法和電解拋光,分別作為放電加工後之複合製程,並以模具鋼SKD61為工件材料,對碳化鎢微球狀電極放電加工後製作出直徑約100μm、深度約25μm的微凹型球面模具,進行模穴表面精微拋光,期能改善模穴表面品質,以達到高品質微凹型球面模具的需求。
    實驗結果顯示,在進行電泳拋光時,以電壓5V、SiC磨粒濃度10%、電泳液為pH 9,經1分鐘的沉積後,將可使SiC磨粒有效沉積於碳化鎢球狀電極表面,再以轉速3000rpm,對放電過後的微球面模穴表面進行10min拋光後,可將模穴表面粗糙度值由Rmax 3.183μm(Ra 0.198μm),改善至Rmax 0.448μm(Ra 0.037μm)。在以電解電壓1.5V,加工時間30sec,對放電過後的微球面模穴表面進行電解拋光後,可將模穴表面粗糙度值改善為Rmax 0.819μm(Ra 0.026μm)。


    In this study, using micro-electro-discharge-machining (micro-EDM) combined with electrophoretic deposition (EPD) and electropolishing (EP) to machine a micro-spherical cavity in SKD61. During the machining process, a micro-spherical tool is built by wire electro-discharge grinding, spherical forming directly by using micro-EDM for machining the micro-spherical cavity that is polished by EPD and EP.
    In the first stage of the study, EPD process, the polishing characteristics of electro discharge machined cavity surface in electrophoretic deposition are investigated. The experimental result shows that the initial roughness of electro-discharge machined cavity surface could be improved from 3.183μm Rmax(0.198 μm Ra ) to 0.448μm Rmax (0.037 μm Ra ).
    In the second stage of the study, EP process, the parameters of electrolytic voltage and electrolytic time are addressed. The result shows the initial roughness of surface could be improved from 3.183μm Rmax(0.198 μm Ra ) to 0.819μm Rmax (0.026 μm Ra ).

    摘 要 I Abstract II 謝 誌 III 目 錄 IV 圖目錄 IX 表目錄 XII 第一章 緒論 1 1-1 研究動機 1 1-2 研究目的與方法 2 第二章 基本原理介紹 3 2-1 放電加工基本原理 3 2-1-1 放電加工原理 3 2-1-2 放電加工去除機制 5 2-1-3 放電加工的優缺點 8 2-1-4 放電加工參數與影響 9 2-2 線放電研磨加工原理 12 2-3表面張力原理 14 2-4 電泳沉積基本原理 15 2-4-1 電泳沉積簡介 15 2-4-2 電雙層(Electrical double layer) 17 2-4-3 粉體粒子表面電荷來源 19 2-4-4 電泳沉積方式與沉積速率 21 2-4-5 電泳沉積磨料之拋光機制 23 2-5 電解拋光原理 24 2-5-1 電解拋光簡介 24 2-5-2 電解拋光基本原理 25 2-5-5 金屬的鈍化 27 第三章 實驗設備、材料與方法 29 3-1 實驗設備 29 3-1-1 放電加工機 29 3-1-2 送線機構 31 3-1-3 X-YTable 電極旋轉夾持機構 32 3-1-4 電泳沉積機構 33 3-1-6 CCD(Charge Coupled Device)量測系統 35 3-1-7 電子天平 35 3-1-8 超音波洗淨機 35 3-1-9 去離子純水系統 35 3-1-10 pH量測計 35 3-1-11 電磁加熱攪拌器 36 3-1-12 微電源供應器 36 3-1-13低真空掃描式電子顯微鏡(Low Vacuum-Scanning Electron Microscope:LVSEM) 36 3-1-14 恆電位儀 36 3-1-15 全自動介面電位分析儀 (Zeta Probe) 36 3-1-16 原子力顯微鏡(Atomic Force Microscope) 37 3-1-17 歐傑光電子能譜儀(Auger/ESCA) 37 3-2 實驗材料 38 3-2-1 工件材料 38 3-2-2 工具電極材料 39 3-2-3 線電極材料 39 3-2-4 磨粒材料 40 3-2-5 分散劑 41 3-2-6 輔助電極材料 42 3-2-7 電解拋光之電解液 42 3-3實驗方法 43 3-4 實驗參數設定 49 3-4-1 工具電極放電加工參數 49 3-4-2 放電成球 50 3-4-3 模具鋼SKD61微凹型球面模穴放電加工 51 3-4-4 電泳沉積 52 3-4-5 模具鋼SKD61微凹型球面模穴電泳拋光 52 3-4-6 電解拋光 53 3-5 實驗流程 54 第四章 結果與討論 55 4-1 微凹型球面模穴放電成形加工 55 4-2 結合放電與電泳沉積之微凹型球面模穴精微拋光研究 57 4-2-1 電壓對電泳沉積之影響 58 4-2-2 pH值對電泳沉積之影響 59 4-2-3 Zeta 電位(ζ potential) 60 4-2-4 沉積時間對電泳沉積之影響 61 4-2-5 碳化矽濃度對電泳沉積之影響 62 4-2-6 碳化鎢電極轉速對電泳沉積之影響 63 4-2-7 電泳沉積之重現性 65 4-2-8 電泳沉積之持續性 68 4-2-9 電泳沉積電壓對工件(SKD61)之影響 69 4-2-10 拋光間隙對微凹型球面模穴之影響 71 4-2-11 拋光時間對微凹型球面模穴之影響 73 4-2-12 電極轉速對微凹型球面模穴之影響 76 4-2-13 有無電泳沉積對微凹型球面模穴之影響 79 4-3 結合放電與電解拋光之微凹型球面模穴精微拋光研究 80 4-3-1 電解拋光電壓對微凹型球面模穴之影響 82 4-3-2 電解拋光時間對微凹型球面模穴之影響 84 4-3-3 電解拋光前後微凹型球面模穴之比較 85 第五章 結 論 87 參考文獻 88

    1. H. Huang, H. Zhang, L. Zhou and H. Y Zheng “Ultrasonic vibration assisted electro-discharge machining of microholes in Nitinol ” J. Micromech. Microeng.,Vol 13 ,pp. 693–700, 2003.
    2. S. S. Choi, Jung, D. W. Kim, M. A. Yakshin, J. Y. Park and Y. Kuk, “Frabrication and microelectron gun arrays using laser micromachining” Microelectronic Engineering 41/42, pp.167-170, 1998.
    3. D. M. Allen, A. Lecheheb, “Micro electro-doscharge machining of ink jet nozzles, optimum selection of material and machining parameters”, Journal of Materials Processing Technology, Vol 58, pp53-66, 1996.
    4. X. Q. Sun ,T. Masuzawa , M. Fjino, “Micro ultrasonic machining and its applications in MEMS”, Sensors and actuators, A57 ,pp159-164 ,1997.
    5. W. Ehrfeld and H. Lehr, “Deep X-Ray Lithography for the production of three-dimensional microstructures from metals”, Polymers and Ceramics, Vol. 45 No.3, pp349-365, 1995.
    6. S. S. Choi, M. Y. Jung, D. W. Kim, M. A. Yakshin, J. Y. Park, Y. Kuk,
    “Fabrication and microelectron gun arrays using laser micromachining”,
    Microelectronic Engineering, Vol.41-42 ,pp.167-170, 1998.
    7. R. K. Kupka, F. Bouamrance, Cremers, Megtert, Smegtert, “Mircofabrication: LIGA-X and applications”, Applied Surface Science, Vol.164 , pp97-110, 2000.
    8. T. Oshita, Y. Sawaki, M. Kishimoto, “Grinding performance of pellet prepared using nanosize ceria particles”, Journal of Alloys and Compounds, Vols.408-412, pp.1118-1122, 2006.
    9. Y. Yamamoto, H. Maeda, H. Shibutani, H. Suzuki and O. Horiuchi, “A study on constant-pressure grinding with EPD pellets”, Key Engineering Materials, Vols. 257-258, pp.135-140, 2004.
    10. H. P. Tsui, B. H. Yan, W. T. Wu, S. T. Hsua, “A study on stainless steel mirror surface polishing by using the electrophoretic deposition method”, International Journal of Machine Tools & Manufacture, Vol.47, pp.1965-1970, 2007.
    11. E. S. Lee, “Machining Characteristics of the Electropolishing of Stainless Steel(STS316L)”, J Adv Manuf Technol, pp591-599, 2000. 
    12. J. C. Hung, B. H. Yan, H. S. Liu and H. M. Chow, “Micro-hole machining using micro-EDM combined with electropolishing” J. Micromech. Microeng., Vol 16, pp.1480-1486, 2006.
    13. C. A. Huang, W. Lin and S. C. Lin, “The electrochemical polishing behaviour of P/M high-speed(ASP23)in perchloric-acetic mixed acids”,Corrosion Science, Vol 45, pp.2627-2638, 1980.
    14. D. Y. Sheu, “Micro-spherical probes machining by EDM”, Journal of Micromechanics and Microengineering, Vol 15, pp185-189, 2005.
    15. J. C. Hung, S. C. Lien, J. K. Lin ,F. Y. Huang and B. H. Yan, “Fabrication of a micro-spherical tool in EDM combined with Ni-diamond co-deposition” J. Micromech. Microeng.,Vol 18, 045010(10pp), 2008.
    16. Laxmidhar Besra, Meilin Liu “A review on fundamentals and applications of electrophoretic deposition (EPD)” Progress in Materials Science ,Vol 52, pp.1–61, 2007.
    17. Put S, Vleugels J, Anne G, Van der Biest O., “Functionally graded ceramic and ceramic-metal composites shaped by electrophoretic deposition” Colloids Surf A: Physicochem Eng Aspects , Vol 222, pp.223–32, 2003.
    18. A. Pfrengle, H. von Both, R. Knitter, J. Haußelt, “Electrophoretic deposition and sintering of zirconia layers on microstructured steel substrates”, Journal of the European Ceramic Society, Vol.26, pp.2633–2638, 2006.
    19. Ferrari B, Sanchez-Herencia AJ, Moreno R., “Electrophoretic forming of Al2O3/Y-TZP layered ceramics form aqueous suspension” Mater Res Bull , Vol 33(3), pp.487–99, 1998.
    20. C. Kaya, F. Kaya, B. Su, B. Thomas, A. R. Boccaccini, “Structural and functional thick ceramic coatings by electrophoretic deposition”, Surface & Coatings Technology, Vol 191, pp.303– 310, 2005.
    21. Sarkar P, Datta S, Nicholson PS., “Functionally graded ceramic/ceramic and metal/ceramic composites by electrophoretic deposition” Composites Part B , Vol 28B, pp.49–54, 1997.
    22. Won Mook Choi1 and O Ok Park, “The fabrication of micropatterns of a 2D colloidal assembly by electrophoretic deposition”, Nanotechnology, Vol 17, pp.325–329, 2006.
    23. R. Ramachandra Rao, H.N. Roopa, T.S. Kannan, “Effect of pH on the dispersability of silicon carbide powders in aqueous media” Ceramics International ,Vol 25,pp.223-230, 1999.
    24. 張有義、郭蘭生,膠體及界面化學入門,高立圖書有限公司,民國八十五年。
    25. 陳正德,「碳化矽的電泳沈積現象探討」,國立中央大學,碩士論文,2002。
    26. 陳宗淇、王光信、徐桂英,膠體與界面化學,高等教育出版社,2001。
    27. 劉晉春、趙家齊主編,特種加工,哈爾濱工業大學。

    QR CODE
    :::