跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王子賓
Tzu-Pin Wang
論文名稱: 交互應用各式地球物理探勘方法於土壤及地下水污染場址之研究
Study on the application of integrating ERT, GPR, EM methods onto soil and groundwater contaminated sites
指導教授: 陳建志
Chien-Chih Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 地球科學學院 - 地球科學學系
Department of Earth Sciences
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 284
中文關鍵詞: 地電阻影像法透地雷達電磁法污染土壤地下水電阻率導電率整治傳輸地球物理探勘掩埋場
外文關鍵詞: CHERT
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 地球物理探勘方法係協助土壤及地下水污染問題進行場址評估的可行技術,已經常應用在整治前的污染分布與水文地質調查,更逐漸延伸應用在整治中、後的研究。惟不同的場址、技術與設備均有其限制與瓶頸,地球物理方法不應在缺乏專業素養與詳細規劃,對污染問題認知不足的情況下隨意施測,武斷解釋,而是必須在調查研究前充分瞭解場址環境與污染物特性,因地置宜交互使用各式地物技術,並妥善與環工、地質、地下水、土木、生物化學等其他領域共同整合,完備融入在調查或整治系統中,才能取得有效之成果。
    本文藉由數值模擬與真實案例研析,探討地電阻影像法、透地雷達法與頻率域電磁法交互應用於各類型土壤及地下水污染場址之適當時機與方式及所能解決之問題,以提昇運用地球物理方法協助解決土壤及地下水污染問題的價值與正確性,並擴大應用層面。本研究之具體成果為:
    一、提出在棄置掩埋型場址與工廠型場址污染調查時各技術應用時機、作業流程與污染判釋邏輯。一般而言,固態廢棄物、純相有機溶劑電阻率偏高,易在透地雷達呈現強反射訊號;重金屬污泥則多具有高導電率的性質,易使透地雷達反射訊號衰減。但地下污染牽涉許多複雜的現象,爐石與飛灰含水時電阻率會下降;油品類可能因生化作用造成電性改變,導電率上升;高導電率的垃圾水與廢污水則可能隱蔽其他污染物的反應。
    二、地表地電阻影像法不同電極排列之解析能力及受雜訊干擾影響程度不同。為取得較高解析度的成果,建議在土壤及地下水問題調查時,電極間距應小於3 m,且測線長度應超過目標測深4 ~ 5倍以上,同時應以兩種以上的排列調查成果綜合研判。跨孔式地電阻影像法則須依據場址現況設計並反覆調整排列法,應用在地下水污染場址時,井內電極建議應以小於1 m,時間序列分析時應特須特別維持資料品質與一致性。
    三、將跨孔式地電阻影像法有效融入在地下水整治規劃設計之中,採用自行改良設計跨孔式地電阻影像法電極排列,並妥善應用時間序列分析,發展出一套藥劑流布評估系統,以接近4D影像形式描繪整治藥劑在灌注過程中的主要傳輸範圍,配合採樣分析,研判地層中尚待加強改善的區域,並依評估成果規劃次階段改善方式,更能達到精確整治的目標,大幅提升地下水整治的效益。
    本研究含附錄共計探討17個台灣真實場址之案例,牽涉之污染問題包含垃圾廢棄物、爐石、土壤重金屬、油品與含氯有機溶劑。另整彙百餘篇地物技術於土壤及地下水污染相關研究之國際發表文獻,以利檢索。期望本研究能作為未來類似場址調查應用之參酌。


    Geophysical exploration methods are used to assist to assess the soil and groundwater contaminated sites, and they have not only been often used to survey the pollution distribution and hydrogeological investigation in pre-remediation, but also extended their applications into the during and post remediation analyses. However, there are limitations and bottlenecks subject to different sites, techniques and equipment. Geophysical methods results should not be randomly and arbitrarily interpreted without sufficient professionalism and detailed planning. Instead a comprehensive understand of the environment and pollutant characteristics of sites before the investigation is a must. Carefully map the properties and the qualities of the contaminated sites to the features of each technology, and then prudently hand-picked out the appropriate technology/ies to evacuate the remediation. At the same time, in order to obtain valid results, all the way from the pre-remediation investigation to the post-remediation evaluation, it is curtail to closely work with professionals from other areas such as from environmental engineering, geology, groundwater, civil engineering, biochemistry and so forth.
    By numerical simulation and real case analysis, this present study explores the appropriate timing and manner of applying ERT,GPR,EM interactively onto various types of soil and groundwater contaminated sites, and what problems can be best resolved by using what kind of configuration. Therefore, the value and correctness of geophysical methods in solving the soil and groundwater contamination can be enhanced, and the application level of the methods can be promoted. The actual results of this study are:
    First, to propose the best timing of applying each technology, the processes, and the pollution interpretation logic for sites with buried disposal, and factories. In general, solid wastes, and pure organic solvents are with high resistivity, and strong reflection signals often show in GPR, while heavy-metal sludge is with high electrical conductivity properties, and often cause signal attenuations in GPR.
    However, underground contamination involves complex phenomena, when the hearthstone is moist, the resistivity drops, where there are biochemicals, oil products can change in electrical properties, and reactions of other pollutants can be concealed by sewage.
    Second, in different ERT electrode arrangements, the degree of influence by noise interference varies. Therefore, to achieve higher resolution results, it is suggested that when investigating the soil and groundwater, the electrode spacing be less than 3 m, the survey lines be 4 to 5 times longer than the target sounding, and two or more configurations be arranged for comprehensive judgments. Cross-hole resistivity imaging needs to be designed in accordance with the features of the site, and repeatedly rearrange the setting. For example, at groundwater contaminated sites, in-well ERT electrodes should be less than 1 m, while it is important to specially maintain the data quality and the consistency when applying time-lapse analysis.
    Third, an improved array, the cross-hole resistivity imaging method is integrated effectively into the groundwater remediation plan designs. Additionally, a drug spreading evaluation system is developed by using 4D image depicting to outline the major transmission after the agent injection, and with the sampling and analysis methods to locate the formations where need to be enhanced, and according to the assessment results to plan the following remediation stage to achieve the goal of accurate remediation, and improve the groundwater remediation effectiveness.
    This study including its appendix contains a total of 17 cases in Taiwan. Contaminations discussed include wastes, hearthstones, soil with heavy metals, and oil and chlorinated organic solvents. Another feature is incorporating more than one hundred of internationally published literature of research in the soil and groundwater contamination for reference. Hope this study can shad light on investigation into sites with similar compositions.

    目 錄 中文摘要 i 英文摘要 ii 謝誌 iv 目錄 v 圖目錄 vii 表目錄 x 第一章 緒論 1 1-1研究動機與目的 1 1-2台灣土壤及地下水污染相關概述 3 1-2-1 污染定義與管制標準 3 1-2-2 污染物質特性 4 1-2-3 常見之污染場址類型 8 1-2-4 調查瓶頸與因應方式 13 1-2-5 地球物理探勘技術之應用 15 1-3 地電法於土壤及地下水污染場址應用之可行性與價值 18 1-4 本文介紹 22 第二章 研究方法與文獻回顧 24 2-1 淺層地球物理探勘技術沿革 24 2-1-1 地電阻影像法沿革 27 2-1-2 透地雷達法沿革 32 2-1-3 電磁法沿革 34 2-2 研究方法原理概述 35 2-2-1 地電阻影像法原理概述 36 2-2-2 ERT資料處理與品質控制說明 42 2-2-3 ERT電極排列 43 2-2-4透地雷達法原理概述 50 2-2-5 頻率域電磁法原理概述 53 2-3地電法於土壤及地下水污染問題應用文獻探討 57 第三章 土壤及地下水污染調查研究成果 78 3-1 ERT數值模擬 78 3-1-1 成像能力數值模擬 79 3-1-2 淺地表干擾數值模擬 80 3-1-3 側向三維效應數值模擬 82 3-1-4 污染物濃度數值模擬 92 3-2 土壤及地下水污染調查案例研究 94 3-2-1 案例一-棄置掩埋場址爐石分布調查 94 3-2-2 案例二-地下掩埋槽體含重金屬污泥調查 102 3-2-3 案例三-燃料油品儲槽污染調查 115 3-2-4 案例四-DNAPL洩漏源污染調查 118 3-2-5 案例五-DNAPL地下水污染調查 121 第四章 地下水污染整治場址研究成果 125 4-1 CHERT排列法設計與分析方法 125 4-1-1 CHERT排列法設計說明 126 4-1-2 時間間隔序列資料處理說明 132 4-2 地下水污染整治場址案例研究 139 4-2-1 案例六-地下水LNAPL污染整治場址 139 4-2-2 案例七-地下水DNAPL污染整治場址 147 4-2-3 案例八-生物膜影響改善效能之地下水DNAPL污染整治場址 158 第五章 綜合討論 165 5-1 棄置掩埋型場址 165 5-2 工廠型場址 169 5-3 地下水污染整治型場址 173 第六章 結論與建議 178 6-1 結論 178 6-2 建議與展望 181 參考文獻 183 附錄A土壤及地下水管制及監測標準 221 附錄B ERT、GPR、FDEM發展過程歷史文獻 226 附錄C常見排列法之靈敏值等值圖 231 附錄D地質與混合物材料電阻率範圍 235 附錄E台灣部分區域地質材料電阻率之實際研究值 238 附錄F金屬、有機溶劑與無機水溶液之電阻率 242 附錄G常見材料的介電常數 247 附錄H FDEM調查非法棄置場址污泥分布 248 附錄I FDEM與ERT調查非法掩埋爐石分布 250 附錄J爐石電性探討案例 252 附錄K GPR對於不同地下掩埋物反射波特徵 253 附錄L ERT調查品質檢核方法與錯誤案例探討 254 附錄M酸性廢污水隱蔽地電阻訊號案例 258 附錄N地下水污染場址下游周界調查案例 260 附錄O以氣泡分布評估Fenton藥劑流向案例 261 附錄P污染源整治成效評估案例 264 附錄Q 4D TL-CHERT藥劑流布評估案例 265 圖目錄 圖1.1 各種污染物之污染團平均分布範圍 8 圖1.2 洩漏源土壤樣本 20 圖1.3 含有DNAPL污染物的土壤樣本 21 圖1.4 污染物附著在採樣管壁 21 圖1.5 地下水採集到純相NAPL 21 圖2.1 Near Surface Geophysics期刊2002~2010方法統計 26 圖2.2 地球物理探勘技術於淺層環境調查之適用性 27 圖2.3地電阻影像法施測概念 37 圖2.4 電阻率量測理論模型 38 圖2.5 直流電阻法初始假設模型 39 圖2.6 電極配置示意圖 41 圖2.7 現勘後調整ERT測線位置示意圖 42 圖2.8 Wenner排列法 44 圖2.9 Schlumberger排列法 44 圖2.10 Dipole-Dipole排列法 44 圖2.11 Gradient排列法 45 圖2.12 Pole-Dipole排列法 45 圖2.13 Pole-Pole排列法 45 圖2.14 Wenner排列法靈敏值函數 47 圖2.15 透地雷達施測示意圖 50 圖2.16 頻率域電磁法探測示意圖 54 圖2.17 電磁法相位示意圖 55 圖2.18 常見材料電阻率分布 58 圖2.19 污染物降解過程導電率變化圖 69 圖3.1 地表ERT第一種模擬假設模型 80 圖3.2 地表ERT第一種模擬七種排列法逆推模型 80 圖3.3地表ERT第二種模擬假設模型 81 圖3.4地表ERT第二種模擬七種排列法逆推模型 81 圖3.5地表ERT第三種模擬假設模型 84 圖3.6 側向效應WN逆推模型 85 圖3.7 側向效應SH逆推模型 86 圖3.8 側向效應DD逆推模型 87 圖3.9 側向效應WS逆推模型 88 圖3.10 側向效應GD逆推模型 89 圖3.11 側向效應PD逆推模型 90 圖3.12 側向效應PP逆推模型 91 圖3.13 第四種數值模擬成果 93 圖3.14 案例一場址航照圖與ERT測線配置圖 96 圖3.15 案例一FDEM探測成果圖 97 圖3.16 案例一ERT東北-西南向測線剖面成果 98 圖3.17 案例一ERT西北-東南向測線剖面成果 99 圖3.18 案例一ERT西北-東南向測線成果套繪2012年航照圖 100 圖3.19 案例一ERT東北-西南向測線成果套繪2012年航照圖 101 圖3.20 A-1鑽探岩心箱照片 101 圖3.21 案例二場址圖 104 圖3.22 整治前GPR-2-1剖面 105 圖3.23 整治前ERT剖面成果 106 圖3.24 整治前FDEM探測結果 108 圖3.25 整治後 GPR-5-1剖面 109 圖3.26整治後地電阻影像法剖面成果 110 圖3.27 整治後FDEM調查成果 111 圖3.28 地下槽體開挖照片 112 圖3.29 整治後 GPR-2-2 剖面 113 圖3.30 ERT-2-2整治前後TL電阻率差異百分率 113 圖3.31 案例三場址示意圖 116 圖3.32 GPR-3-1調查剖面成果 116 圖3.33 案例三開挖照片 117 圖3.34案例四場址示意圖 119 圖3.35 GPR-4-1調查剖面成果 120 圖3.36 ERT-4-1調查剖面成果 120 圖3.37案例五場址示意圖 122 圖3.38 ERT-5-1 GD排列法調查成果 124 圖3.39 ERT-5-2 WS排列法調查成果 124 圖4.1 CHERT電極配置示意圖 127 圖4.2 CHERT不同排列法數值模擬 129 圖4.3 CHERT不同排列法靈敏值分析 130 圖4.4 CHERT電流短流影響 131 圖4.5 SDERT數值模擬 132 圖4.6 不同性質污染物質侵入地質假設模型 134 圖4.7 TL差異率分析模型 134 圖4.8 非均質地質模型 135 圖4.9 相同模型不等量資料電阻率剖面 136 圖4.10 相同模型不等量資料TL分析 137 圖4.11 TL-CHERT調查流程圖 138 圖4.12 案例六場址示意圖 141 圖4.13 ERT-6-1地層背景值探測結果 141 圖4.14第一次CHERT探測成果 143 圖4.15第二次CHERT探測成果 144 圖4.16第三次CHERT探測成果 145 圖4.17案例七場址示意圖 149 圖4.18 整治藥劑重力灌注示意圖 150 圖4.19 DPI灌注示意圖 150 圖4.20 案例七CHERT電阻率剖面成果圖 153 圖4.21開始灌藥整治12小時後 CHERT導電率差異率 153 圖4.22 開始灌藥整治36小時後 CHERT導電率差異率 155 圖4.23 開始灌藥整治50小時後 CHERT導電率差異率 155 圖4.24 二階段整治GC-1對GC-4 TL-CHERT成果圖 157 圖4.25 生物膜造成整治灌注阻塞示意圖 160 圖4.26 案例八場址配置示意圖 160 圖4.27 SDERT電極配置 160 圖4.28 案例八重力灌注TL-SDERT成果 162 圖4.29 案例八DPI灌注TL-SDERT成果 163 圖5.1 棄置掩埋型場址調查流程圖 168 圖5.2 工廠型場址調查流程圖 172 圖5.3 CHERT藥劑流布評估系統規劃與調查流程圖 177 表目錄 表1-1 國內土壤及地下水污染列管場址數量彙整表 9 表1-2 地球物理於各型污染場址之調查目的與環境限制 18 表1-3 主要中英文名詞對照與單位符號說明表 23 表2-1 常見的電極排列法有效探測深度 48 表2-2 參考文獻依場址類型與研究方法對照表 74 表2-3 參考文獻依污染物類型與研究方法對照表 75 表4-1 各時期地下水中苯濃度檢測數據 146 表4-2 案例七地質材料分析 150 表4-3 整治前各井中地下水不同深度VC濃度 151 表4-4 整治後各井中地下水不同深度VC濃度 156

    英文部分
    〔001〕 Aal, G. Z. A., Atekwana, E. E., & Werkema Jr, D. Sensing the Presence and Transport of Engineered Nanoparticles in Saturated Porous Media using Spectral Induced Polarization (SIP) Method, ICEG, 2015.
    〔002〕 Abudeif, A. M. "Integrated electrical tomography and hydro-chemical analysis for environmental assessment of El-Dair waste disposal site, west of Sohag city, Egypt." Environmental Earth Sciences 74.7: 5859-5874, 2015.
    〔003〕 Abu-Zeid, N., Bianchini, G., Santarato, G., & Vaccaro, C. Geochemical characterisation and geophysical mapping of Landfill leachates: the Marozzo canal case study (NE Italy). Environmental Geology, 45(4), 439-447, 2004.
    〔004〕 Adegbola, A. A., & Adewoye, A. O. On Investigating Pollution of Groundwater from Atenda Abattoir Wastes, Ogbomoso, Nigeria. International Journal of Engineering and Technology, 2(9), 2012.
    〔005〕 Adepelumi, A. A., Solanke, A. A., Sanusi, O. B., & Shallangwa, A. M. Model tank electrical resistivity characterization of LNAPL migration in a clayey-sand formation. Environmental Geology, 50(8), 1221-1233, 2006.
    〔006〕 Afshar, A., Abedi, M., Norouzi, G. H., & Riahi, M. A. Geophysical investigation of underground water content zones using electrical resistivity tomography and ground penetrating radar: A case study in Hesarak-Karaj, Iran. Engineering Geology, 196, 183-193, 2015.
    〔007〕 Aghasi, A., Mendoza-Sanchez, I., Miller, E. L., Ramsburg, C. A., & Abriola, L. M. A geometric approach to joint inversion with applications to contaminant source zone characterization. Inverse Problems, 29(11), 115014, 2013.
    〔008〕 Aizebeokhai, A. P., & Olayinka, A. I. Anomaly effects of arrays for 3d geoelectrical resistivity imaging using orthogonal or parallel 2d profiles. African Journal of Environmental Science and Technology, 4(7), 446-454, 2010.
    〔009〕 Ajo-Franklin, J. B., Geller, J. T., & Harris, J. M. A survey of the geophysical properties of chlorinated DNAPLs. Journal of Applied Geophysics, 59(3), 177-189, 2006.
    〔010〕 Ajo-Franklin, J. B., Geller, J. T., Majer, E. L., Peterson, J. E., Williams, K. H., & Harris, J. M. Preliminary Characterization of a NAPL-Contaminated Site using Borehole Geophysical Techniques. In 16th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems, April, 2003.
    〔011〕 al Hagrey, S. A. CO2 plume modeling in deep saline reservoirs by 2D ERT in boreholes. The Leading Edge, 30(1), 24-33, 2011.
    〔012〕 al Hagrey, S. A. Geophysical imaging of root-zone, trunk, and moisture heterogeneity. Journal of Experimental Botany, 58(4), 839-854, 2007.
    〔013〕 al Hagrey, S. A., & Petersen, T. Numerical and experimental mapping of small root zones using optimized surface and borehole resistivity tomography. Geophysics, 76(2), G25-G35, 2011.
    〔014〕 Alani, A. M., Aboutalebi, M., & Kilic, G. Applications of ground penetrating radar (GPR) in bridge deck monitoring and assessment. Journal of Applied Geophysics, 97, 45-54, 2013.
    〔015〕 Albano, J., Comfort, S. D., Zlotnik, V., Halihan, T., Burbach, M., Chokejaroenrat, C., Onanong, S., & Clayton, W. In Situ Chemical Oxidation of RDX-Contaminated Groundwater with Permanganate at the Nebraska Ordnance Plant. Groundwater Monitoring & Remediation, 30(3), 96-106, 2010.
    〔016〕 Alegria, F. C., Martinho, E., & Almeida, F. Measuring soil contamination with the time domain induced polarization method using LabVIEW. Measurement, 42(7), 1082-1091, 2009.
    〔017〕 Ali Hago, H. Application of electrical resistivity method in quantitative assessment of groundwater reserve of unconfined aquifer (Doctoral dissertation, Universiti Putra Malaysia), 2000.
    〔018〕 Ali, N. A. M., Hamzah, U., & Sulaiman, M. A. A. Laboratory Study of Contaminants Migration Pattern in Soil Using 2D Electrical Resistivity Tomography. International Journal of Engineering, 2(12), 2013.
    〔019〕 Allen, R. P., & Crowson, R. A. The Use of Geophysics To Map Low Level Radioactive Waste Disposal Sites at Former Air Force Weapons Storage Areas. In 18th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems, April, 2005.
    〔020〕 Allix, P., Burnham, A., Fowler, T., Herron, M., Kleinberg, R. & Symington, Bill. Coaxing Oil from Shale. Oilfield Review 22(4), 4–15, 2011.
    〔021〕 Al-Nuaimy, W., Huang, Y., Nakhkash, M., Fang, M. T. C., Nguyen, V. T., & Eriksen, A. Automatic detection of buried utilities and solid objects with GPR using neural networks and pattern recognition. Journal of Applied Geophysics, 43(2), 157-165, 2000.
    〔022〕Al-Tarazi, E., El-Naqa, A., El-Waheidi, M., & Rajab, J. A. Electrical geophysical and hydrogeological investigations of groundwater aquifers in Ruseifa municipal landfill, Jordan. Environmental Geology, 50(7), 1095-1103, 2006.
    〔023〕 Annan, A. P. GPR—History, Trends, and Future Developments. Subsurface Sensing Technologies and Applications, 3(4), 253-270, 2002.
    〔024〕 Annan, A. P. Ground Penetrating Radar Workshop Notes, 2001.
    〔025〕 Annan, A. P. Radio interferometry depth sounding: Part I-Theoretical discussion. Geophysics, 38(3), 557-580, 1973.
    〔026〕 Annan, A. P., & Davis, J. L. Impulse radar applied to ice thickness measurements and freshwater bathymetry. Energy, Mines, and Resources Canada, Report of Activities, Part B, 1977.
    〔027〕 Annan, A. P., & Davis, J. L. Impulse radar sounding in permafrost. Radio Science, 11(4), 383-394, 1976.
    〔028〕 Aranda, R. M. R., Pagan, P. M., & Cano, A. F. Methodology for the detection of contamination by hydrocarbons and further soil sampling for volatile and semi-volatile organic enrichment in former petrol stations, SE Spain. EURASIAN JOURNAL OF SOIL SCIENCE (EJSS), 1(1), 10-15, 2012.
    〔029〕 Aristodemou, E., & Thomas-Betts, A. DC resistivity and induced polarisation investigations at a waste disposal site and its environments. Journal of Applied Geophysics, 44(2), 275-302, 2000.
    〔030〕 Atekwana, E. A., & Slater, L. D. Biogeophysics: A new frontier in Earth science research. Reviews of Geophysics, 47(4), 2009.
    〔031〕 Atekwana, E. A., Sauck, W. A., & Werkema, D. D. Investigations of geoelectrical signatures at a hydrocarbon contaminated site. Journal of Applied Geophysics, 44(2), 167-180, 2000.
    〔032〕 Atekwana, E.A., & Atekwana, E.A. Geophysical signatures of microbial activity at hydrocarbon contaminated sites: a review. Surv Geophys 31, 247-283, 2010.
    〔033〕 Athanasiou, E. N., Tsourlos, P. I., Papazachos, C. B., & Tsokas, G. N. Combined weighted inversion of electrical resistivity data arising from different array types. Journal of Applied Geophysics, 62(2), 124-140, 2007.
    〔034〕 Auken, E., Pellerin, L., Christensen, N. B., & Sorensen, K. A survey of current trends in near-surface electrical and electromagnetic methods. Geophysics, 71(5), G249-G260, 2006.
    〔035〕 Ayala-Cabrera, D., Herrera, M., Izquierdo, J., & Perez-Garcia, R. Location of buried plastic pipes using multi-agent support based on GPR images. Journal of Applied Geophysics, 75(4), 679-686, 2011.
    〔036〕 Ayolabi, E. A., Folorunso, A. F., & Idem, S. S. Application of electrical resistivity tomography in mapping subsurface hydrocarbon contamination. Earth Science Research, 2(1), 93, 2013.
    〔037〕 Başokur, A. T., & Akca, I. Object-based model verification by a genetic algorithm approach: Application in archeological targets. Journal of Applied Geophysics, 74(4), 167-174, 2011.
    〔038〕 Babcock, E., & Bradford, J. H. Reflection waveform inversion of ground-penetrating radar data for characterizing thin and ultrathin layers of nonaqueous phase liquid contaminants in stratified media. Geophysics, 80(2), H1-H11, 2015.
    〔039〕 Bailey, J. T., Evans, S., & Robin, G. D. Q. Radio echo sounding of polar ice sheets. Nature, 204, 420-421, 1964.
    〔040〕 Bano, M., Loeffler, O., & Girard, J. F. Ground penetrating radar imaging and time-domain modelling of the infiltration of diesel fuel in a sandbox experiment. Comptes Rendus Geoscience, 341(10), 846-858, 2009.
    〔041〕 Barker, R. A simple algorithm for electrical imaging of the subsurface. First Break, 10(2), 53-62, 1992.
    〔042〕 Barker, R. D. Depth of investigation of collinear symmetrical four-electrode arrays. Geophysics, 54(8), 1031-1037, 1989.
    〔043〕 Barker, R. D. The offset system of electrical resistivity sounding and its use with a multicore cable. Geophysical Prospecting, 29(1), 128-143, 1981.
    〔044〕 Batayneh, A. T. 2D electrical imaging of an LNAPL contamination, Al Amiriyya fuel station, Jordan. Journal of Applied Sciences, 5(1), 52-59, 2005.
    〔045〕 Batlle-Aguilar, J., Schneider, S., Pessel, M., Tucholka, P., Coquet, Y., & Vachier, P. Axisymetrical infiltration in soil imaged by noninvasive electrical resistivimetry. Soil Science Society of America Journal, 73(2), 510-520, 2009.
    〔046〕 Batmunkh, D., Tosun, S., Gundoğdu, B., Candansayar, M. E., & Ulugergerli, E. U. HLEM and magnetic surveys: examples from the Orkhun Valley, Mongolia. Archaeological Prospection, 11(3), 133-144, 2004.
    〔047〕 Bauman, P. 2-D Resistivity Surveying for Hydrocarbons-A Primer. Focus, 30(04), 2005.
    〔048〕 Bavusi, M., Giocoli, A., Rizzo, E., & Lapenna, V. Geophysical characterisation of Carlo's V Castle (Crotone, Italy). Journal of Applied Geophysics, 67(4), 386-401, 2009.
    〔049〕 Bazin, S. Non intrusive geophysics for pollution plume mapping inside an operating plant. geophysical measurements in waste management Malmo workshop. 16-17, February, 2012.
    〔050〕 Bedient, P. B., Rifai, H. S., & Newell, C. J. Ground Water Contamination: Transport and Remediation. PTR Prentice-Hall. Inc., Englewood Cliffs, NJ, 1999.
    〔051〕 Bellmunt, F., Marcuello, A., Ledo, J., Queralt, P., Falgas, E., Benjumea, B., Velasco, V., & Vazquez-Sune, E. Time-lapse cross-hole electrical resistivity tomography monitoring effects of an urban tunnel. Journal of Applied Geophysics, 87, 60-70, 2012.
    〔052〕 Belmonte-Jimenez, S. I., Bortolotti-Villalobos, A., Campos-enriquez, J. O., Perez-Flores, M. A., & Delgado-Rodriguez, O. Electromagnetic methods application for characterizing a site contaminated by leachates. Revista Internacional de Contaminacion Ambiental, 30(3), 317-329, 2014.
    〔053〕 Benedetto, A., & Pajewski, L. Civil Engineering Applications of Ground Penetrating Radar. Cham: Springer International Publishing, 2015.
    〔054〕 Benedetto, A., & Pensa, S. Indirect diagnosis of pavement structural damages using surface GPR reflection techniques. Journal of Applied Geophysics, 62(2), 107-123, 2007.
    〔055〕 Bermejo, J. L., Sauck, W. A., & Atekwana, E. A. Geophysical discovery of a new LNAPL plume at the former Wurtsmith AFB, Oscoda, Michigan. Groundwater Monitoring & Remediation, 17(4), 131-137, 1997.
    〔055〕 Bermejo, J. L., Sauck, W. A., & Atekwana, E. A. Geophysical discovery of a new LNAPL plume at the former Wurtsmith AFB, Oscoda, Michigan. Groundwater Monitoring & Remediation, 17(4), 131-137, 1997.
    〔056〕Bernstone, C., & Dahlin, T. Electromagnetics and DC resistivity mapping of waste deposits and industrial sites-Experiences from Southern Sweden. In 58th EAGE Conference and Exhibition, June, 1996.
    〔057〕 Bernstone, C., Dahlin, T., & Johnson, P. 3D visualization of a resistivity data set: an example from a sludge disposal site. In Symp. Appl. Geophy. Eng. Environ. Probl. Procs, pp. 917-925, March, 1997.
    〔058〕 Bhattacharya, P. K., & Patra, H. P. Direct current electrical sounding. Amsterdam Elseveir, 1968.
    〔059〕 Binder, D., Bruckl, E., Roch, K. H., Behm, M., Schoner, W., & Hynek, B. Determination of total ice volume and ice-thickness distribution of two glaciers in the Hohe Tauern region, Eastern Alps, from GPR data. Annals of Glaciology, 50(51), 71-79, 2009.
    〔060〕 Bing, Z., & Greenhalgh, S. A. A synthetic study on crosshole resistivity imaging using different electrode arrays. Exploration Geophysics, 28(1/2), 1-5, 1997.
    〔061〕 Bing, Z., & Greenhalgh, S. A. Cross-hole resistivity tomography using different electrode configurations. Geophysical Prospecting, 48(5), 887-912, 2000.
    〔062〕 Binley, A., & Kemna, A. DC resistivity and induced polarization methods. In Hydrogeophysics (pp. 129-156). Springer Netherlands, 2005.
    〔063〕 Binley, A., Cassiani, G., & Deiana, R. Hydrogeophysics: opportunities and challenges. Bollettino di Geofisica Teorica ed Applicata, 51(4), 267-284, 2010.
    〔064〕 Binley, A., Hubbard, S. S., Huisman, J. A., Revil, A., Robinson, D. A., Singha, K., & Slater, L. D. The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resources research, 51(6), 3837-3866, 2015.
    〔065〕 Bobyl, V. G., Romanets, R. G., & Alyab'ev, V. A. The electrical conductivity of benzene and its monohalide derivatives in an ultrasonic field. Soviet Physics Journal, 8(6), 30-34, 1965.
    〔066〕 Boudreault, J. P., Dube, J. S., Chouteau, M., Winiarski, T., & Hardy, E. Geophysical characterization of contaminated urban fills. Engineering Geology, 116(3), 196-206, 2010.
    〔067〕 Boulding, J. R. Use of airborne, surface, and borehole geophysical techniques at contaminated sites: A reference guide. No. PB-94-123825/XAB. Eastern Research Group, Inc., Lexington, MA (United States), 1993.
    〔068〕 Bouzouf, B., Ouazar, D., Himi, M., Casas, A., Elmahi, I., & Benkhaldoun, F. Integrating hydrogeochemical and geophysical data for testing a finite volume based numerical model for saltwater intrusion. Transport in Porous media, 43(1), 179-194, 2001.
    〔069〕 Bowling, J. C., Rodriguez, A. B., Harry, D. L., & Zheng, C. Delineating alluvial aquifer heterogeneity using resistivity and GPR data. Ground Water, 43(6), 890-903, 2005.
    〔070〕 Bowling, J. C., Zheng, C., Rodriguez, A. B., & Harry, D. L. Geophysical constraints on contaminant transport modeling in a heterogeneous fluvial aquifer. Journal of Contaminant Hydrology, 85(1), 72-88, 2006.
    〔071〕 Bozorg, A., Gates, I. D., & Sen, A. Impact of biofilm on bacterial transport and deposition in porous media. Journal of Contaminant Hydrology, 183, 109-120, 2015.
    〔072〕 Bradford, J. H. Measuring water content heterogeneity using multifold GPR with reflection tomography. Vadose Zone Journal, 7(1), 184-193, 2008.
    〔073〕 Bradford, J. H., & Wu, Y. Instantaneous spectral analysis: Time-frequency mapping via wavelet matching with application to contaminated-site characterization by 3D GPR. The Leading Edge, 26(8), 1018-1023, 2007.
    〔074〕 Bradford, J. H., Babcock, E. L., Marshall, H. P., & Dickins, D. F. Targeted reflection-waveform inversion of experimental ground-penetrating radar data for quantification of oil spills under sea ice. Geophysics, 81(1), WA59-WA70, 2015.
    〔075〕 Brewster, M. L., & Annan, A. P. Ground-penetrating radar monitoring of a controlled DNAPL release: 200 MHz radar. Geophysics, 59(8), 1211-1221, 1994.
    〔076〕 Brewster, M. L., Annan, A. P., Greenhouse, J. P., Kueper, B. H., Olhoeft, G. R., Redman, J. D., & Sander, K. A. Observed migration of a controlled DNAPL release by geophysical methods. Ground Water, 33(6), 977-987, 1995.
    〔077〕 Brosten, T. R., Bradford, J. H., McNamara, J. P., Gooseff, M. N., Zarnetske, J. P., Bowden, W. B., & Johnston, M. E. Multi-offset GPR methods for hyporheic zone investigations. Journal of Environmental & Engineering Geophysics, 14(3), 247, 2009.
    〔078〕 Brunzell, H. Detection of shallowly buried objects using impulse radar. Geoscience and Remote Sensing, IEEE Transactions on, 37(2), 875-886, 1999.
    〔079〕 Buckley, F., & Maryott, A. A. Tables of dielectric dispersion data for pure liquids and dilute solutions (Vol. 589). US Dept. of Commerce, National Bureau of Standards, 1958.
    〔080〕 Bud, R., & Warner, D. J. (Eds.). Instruments of science: an historical encyclopedia. Taylor & Francis, 1998.
    〔081〕 Buselli, G., & Lu, K. Groundwater contamination monitoring with multichannel electrical and electromagnetic methods. Journal of Applied Geophysics, 48(1), 11-23, 2001.
    〔082〕 Cagniard, L. Basic theory of the magneto-telluric method of geophysical prospecting. Geophysics, 18(3), 605-635, 1953.
    〔083〕 Cardarelli, E. Electrical resistivity and induced polarization tomography in identifying the plume of chlorinated hydrocarbons in sedimentary formation: A case study in Rho (Milan-Italy). Waste Management & Research, 2009.
    〔084〕 Cardarelli, E., Cercato, M., & Di Filippo, G. Assessing foundation stability and soil-structure interaction through integrated geophysical techniques: a case history in Rome (Italy). Near Surface Geophysics, 5(2), 141-147, 2007.
    〔085〕 Carrigan, C. R., Yang, X., LaBrecque, D. J., Larsen, D., Freeman, D., Ramirez, A. L., Daily, W., Aines, R., Newmark, R., Friedmann, J., & Hovorka, S. Electrical resistance tomographic monitoring of CO2 movement in deep geologic reservoirs. International Journal of Greenhouse Gas Control, 18, 401-408, 2013.
    〔086〕 Cassidy, N. J. Evaluating LNAPL contamination using GPR signal attenuation analysis and dielectric property measurements: Practical implications for hydrological studies. Journal of Contaminant Hydrology, 94(1), 49-75, 2007.
    〔087〕 Catapano, I., Affinito, A., Bertolla, L., Porsani, J. L., & Soldovieri, F. Oil spill monitoring via microwave tomography enhanced GPR surveys. Journal of Applied Geophysics, 108, 95-103, 2014.
    〔088〕 Chambers, J. E., Kuras, O., Meldrum, P. I., Ogilvy, R. D., & Hollands, J. Electrical resistivity tomography applied to geologic, hydrogeologic, and engineering investigations at a former waste-disposal site. Geophysics, 71(6), B231-B239, 2006.
    〔089〕 Chambers, J. E., Loke, M. H., Ogilvy, R. D., & Meldrum, P. I. Noninvasive monitoring of DNAPL migration through a saturated porous medium using electrical impedance tomography. Journal of Contaminant Hydrology, 68(1), 1-22, 2004.
    〔090〕 Chambers, J. E., Meldrum, P. I., Ogilvy, R. D., & Wilkinson, P. B. Characterisation of a NAPL-contaminated former quarry site using electrical impedance tomography. Near Surface Geophysics, 3(2), 79-90, 2005.
    〔091〕 Chambers, J. E., Wilkinson, P. B., Wealthall, G. P., Loke, M. H., Dearden, R., Wilson, R., Allen, D., & Ogilvy, R. D. Hydrogeophysical imaging of deposit heterogeneity and groundwater chemistry changes during DNAPL source zone bioremediation. Journal of Contaminant Hydrology, 118(1), 43-61, 2010.
    〔092〕 Chambers, J. E., Wilkinson, P. B., Weller, A. L., Meldrum, P. I., Ogilvy, R. D., & Caunt, S. Mineshaft imaging using surface and crosshole 3D electrical resistivity tomography: a case history from the East Pennine Coalfield, UK. Journal of Applied Geophysics, 62(4), 324-337, 2007.
    〔093〕 Chambers, J., Ogilvy, R., Kuras, O., Cripps, J., & Meldrum, P. 3D electrical imaging of known targets at a controlled environmental test site. Environmental Geology, 41(6), 690-704, 2002.
    〔094〕 Chang, P. Y., Alumbaugh, D., Brainard, J., & Hall, L. The application of ground penetrating radar attenuation tomography in a vadose zone infiltration experiment. Journal of Contaminant Hydrology, 71(1), 67-87, 2004.
    〔095〕 Chang, P. Y., Chen, C. C., Chang, S. K., Wang, T. B., Wang, C. Y., & Hsu, S. K. An investigation into the debris flow induced by Typhoon Morakot in the Siaolin Area, Southern Taiwan, using the electrical resistivity imaging method. Geophysical Journal International, 188(3), 1012-1024, 2012.
    〔096〕 Che-Alota, V., Atekwana, E. A., Atekwana, E. A., Sauck, W. A., & Werkema Jr, D. D. Temporal geophysical signatures from contaminant-mass remediation. Geophysics, 74(4), B113-B123, 2009.
    〔097〕 Cheng, P. H. Imaging the subsurface structure of the northern tip of the 1999 Chi-Chi earthquake fault in central Taiwan using the electric resistivity method. Terrestrial, Atmospheric and Oceanic Sciences, 11(3), 721-734, 2000.
    〔098〕 Christensen, N. B., Sherlock, D., & Dodds, K. Monitoring CO2 injection with cross-hole electrical resistivity tomography. Exploration Geophysics, 37(1), 44-49, 2006.
    〔099〕 Clement, R., Descloitres, M., Gunther, T., Oxarango, L., Morra, C., Laurent, J. P., & Gourc, J. P. Improvement of electrical resistivity tomography for leachate injection monitoring. Waste Management, 30(3), 452-464, 2010.
    〔100〕 Clifford, J., & Binley, A. Geophysical characterization of riverbed hydrostratigraphy using electrical resistance tomography. Near Surface Geophysics, 8(6), 493-501, 2010.
    〔101〕 Colucci, R. R., Fontana, D., & Forte, E. Characterization Of Two Permanent Ice Cave Deposits In The Southeastern Alps (Italy) By Means Of Ground Penetrating Radar (Gpr), 2014.
    〔102〕 Comfort, S., Zlotnik, V., & Halihan, T. Using Electrical Resistivity Imaging to Evaluate Permanganate Performance During an In Situ Treatment of a RDX-Contaminated Aquifer. ESTCP Project ER-0635, 2009.
    〔103〕 Cornish, J., & Lewis, N. M. Mine Waste Technology Program: Phosphate Stabilization of Heavy Metals Contaminated Mine Waste Yard Soils, Joplin, Missouri NPL Site. US Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 2004.
    〔104〕 Dahlin, T. Pilot study of using magnetics, EM and rsisitivity-IP for separation of industrial waste_geophysical measurements in waste management Malmo workshop, February, 2012.
    〔105〕 Dahlin, T., & Zhou, B. A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophysical Prospecting, 52(5), 379-398, 2004.
    〔106〕 Dahlin, T., & Zhou, B. Multiple-gradient array measurements for multichannel 2D resistivity imaging. Near Surface Geophysics, 4(2), 113-123, 2006.
    〔107〕 Dahlin, T., Aronsson, P., & Thornelof, M. Soil resistivity monitoring of an irrigation experiment. Near Surface Geophysics, 12(1), 35-43, 2014.
    〔108〕 Dahlin, T., Bernstone, C., & Loke, M. H. A 3-D resistivity investigation of a contaminated site at Lernacken, Sweden. Geophysics, 67(6), 1692-1700, 2002.
    〔109〕 Daily, W., & Owen, E. Cross-borehole resistivity tomography. Geophysics, 56(8), 1228-1235, 1991.
    〔110〕 Daily, W., & Ramirez, A. Electrical resistance tomography during in-situ trichloroethylene remediation at the Savannah River Site. Journal of Applied Geophysics, 33(4), 239-249, 1995.
    〔111〕 Daily, W., Ramirez, A., LaBrecque, D., & Nitao, J. Electrical resistivity tomography of vadose water movement. Water Resources Research, 28(5), 1429-1442, 1992.
    〔112〕 Dam, J. V., & Meulenkamp, J. J. Some results of the geo-electrical resistivity method in ground water investigations in the Netherlands. Geophysical Prospecting, 15(1), 92-115, 1967.
    〔113〕 Daniels, J. J., Roberts, R., & Vendl, M. Ground penetrating radar for the detection of liquid contaminants. Journal of Applied Geophysics, 33(1), 195-207, 1995.
    〔114〕 Danielsen, B. E., & Dahlin, T. Numerical modelling of resolution and sensitivity of ERT in horizontal boreholes. Journal of Applied Geophysics, 70(3), 245-254, 2010.
    〔115〕 Davis, J. L. & Annan, A. P. Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy. Geophysical prospecting, 37(5), 531-551, 1989.
    〔116〕 de Castro, D. L., & Branco, R. M. G. C. 4-D ground penetrating radar monitoring of a hydrocarbon leakage site in Fortaleza (Brazil) during its remediation process: a case history. Journal of Applied Geophysics, 54(1), 127-144, 2003.
    〔117〕 de Franco, R., Biella, G., Tosi, L., Teatini, P., Lozej, A., Chiozzotto, B., Giada, M., Rizzetto, F., Claude, C., Mayer, A., Bassan, V., & Gasparetto-Stori, G. Monitoring the saltwater intrusion by time lapse electrical resistivity tomography: The Chioggia test site (Venice Lagoon, Italy). Journal of Applied Geophysics, 69(3), 117-130, 2009.
    〔118〕 de la Vega, M., Osella, A., & Lascano, E. Joint inversion of Wenner and dipole–dipole data to study a gasoline-contaminated soil. Journal of Applied Geophysics, 54(1), 97-109, 2003.
    〔119〕 de Louw, P. G., Eeman, S., Siemon, B., Voortman, B. R., Gunnink, J., Van Baaren, E. S., & Oude Essink, G. H. P. Shallow rainwater lenses in deltaic areas with saline seepage. Hydrology and Earth System Sciences, 15(12), 3659, 2011.
    〔120〕 de Menezes Travassos, J., & Menezes, P. D. T. L. GPR exploration for groundwater in a crystalline rock terrain. Journal of Applied Geophysics, 55(3), 239-248, 2004.
    〔121〕 Deceuster, J., Delgranche, J., & Kaufmann, O. 2D cross-borehole resistivity tomographies below foundations as a tool to design proper remedial actions in covered karst. Journal of Applied Geophysics, 60(1), 68-86, 2006.
    〔122〕 Delgado-Rodriguez, O., Shevnin, V., Ochoa-Valdes, J., & Ryjov, A. Geoelectrical characterization of a site with hydrocarbon contamination caused by pipeline leakage. Geofisica Internacional, 45(1), 63-72, 2006.
    〔123〕 Dentith, M., & Mudge, S. T. Geophysics for the mineral exploration geoscientist. Cambridge University Press, 2014.
    〔124〕 Dey, A., & Morrison, H. F. Resistivity modelling for arbitrarily shaped two-dimensional structures. Geophysical Prospecting, 27(1), 106-136, 1979.
    〔125〕 Doll, W. E., Miller, R. D., & Bradford, J. The emergence and future of near-surface geophysics. The Leading Edge, 31(6), 684-692, 2012.
    〔126〕 Dolphin, L. T., Beatty, W. B., & Tanzi, J. D. Radar probing of Victorio Peak, New Mexico. Geophysics, 43(7), 1441-1448, 1978.
    〔127〕 Edwards, L. S. A modified pseudosection for resistivity and IP. Geophysics, 42(5), 1020-1036, 1977.
    〔128〕 El-Said, M. A. H. Geophysical prospection of underground water in the desert by means of electromagnetic interference fringes. Proceedings of the IRE, 44(1), 24-30, 1956.
    〔129〕 Everett, M. E. Near-surface applied geophysics. Cambridge University Press, 2013.
    〔130〕 Farzamian, M., Santos, F. A. M., & Khalil, M. A. Estimation of unsaturated hydraulic parameters in sandstone using electrical resistivity tomography under a water injection test. Journal of Applied Geophysics, 121, 71-83, 2015.
    〔131〕 Fetter, C. W. Contaminant hydrogeology (Vol. 500). Upper Saddle River, NJ: Prentice hall, 1999.
    〔132〕 Figueiras, J., Goncalves, M. A., Mateus, A., Marques, F. O., Santos, F., & Mota, R. Initial stages of pollutants dispersion around municipal waste disposal facilities: a case study in Northern Portugal. International Journal of Environment and Waste Management, 4(3-4), 341-365, 2009.
    〔133〕Fischanger, F., Morelli, G., Ranieri, G., Santarato, G., & Occhi, M. 4D cross-borehole electrical resistivity tomography to control resin injection for ground stabilization: a case history in Venice (Italy). Near Surface Geophysics, 11(1), 41-50, 2013.
    〔134〕 Francisca, F. M., & Montoro, M. A. Measuring the dielectric properties of soil–organic mixtures using coaxial impedance dielectric reflectometry. Journal of Applied Geophysics, 80, 101-109, 2012.
    〔135〕 Fraser, D. C. Contouring of VLF-EM data. Geophysics, 34(6), 958-967, 1969.
    〔136〕 Frohlich, B., & Lancaster, W. J. Electromagnetic surveying in current Middle Eastern archaeology: Application and evaluation. Geophysics, 51(7), 1414-1425, 1986.
    〔137〕 Frohlich, R. K., Barosh, P. J., & Boving, T. Investigating changes of electrical characteristics of the saturated zone affected by hazardous organic waste. Journal of Applied Geophysics, 64(1), 25-36, 2008.
    〔138〕 Furukawa, F., Hino, Y., Inoue, H., Assri, K., & Yorita, J. Tunnelling in Water-Bearing Unconsolidated Ground According to Specifications for Auxiliary Methods Revised to Reflect Varying Soli Conditions-Construction in the North Work Section of the Takaoka Tunnel on the HokurikuShlnkansen Railway Line. Water and Energy Abstracts, 17(2), 2007.
    〔139〕 Godio, A., & Naldi, M. Integration of electrical and electromagnetic investigation for contaminated site. American Journal of Environmental Sciences, 5(4), 562-569, 2009.
    〔140〕 Godio, A., & Naldi, M. Two-dimensional electrical imaging for detection of hydrocarbon contaminants. Near Surface Geophysics, 1(3), 131-137, 2003.
    〔141〕 Goes, B. J. M., & Meekes, J. A. C. An effective electrode configuration for the detection of DNAPLs with electrical resistivity tomography. Journal of Environmental & Engineering Geophysics, 9(3), 127-141, 2004.
    〔142〕 Grathwohl, P. Geochemical process evaluation: time scales of contaminant release from complex source zones. Prospect and limit of natural attenuation at tar oil contaminated sites. Dresden, 1-10, 2001.
    〔143〕 Greenhalgh, M. S. DC resistivity modelling and sensitivity analysis in anisotropic media, 2008.
    〔144〕 Greenhalgh, S., Zhou, B., & Zhe, J. Crosshole resistivity imaging of aquifer properties. Exploration Geophysics, 31(1/2), 315-320, 2000.
    〔145〕 Greenhouse, J. P., & Harris, R. D.. Migration of contaminants in groundwater at a landfill: A case study: 7. DC, VLF, and inductive resistivity surveys. Journal of Hydrology, 63(1), 177-197, 1983.
    〔146〕 Greenhouse, J., Brewster, M., Schneider, G., Redman, D., Annan, P., Olhoeft, G., Lucius, J., Sander, K. & Mazzella, A. Geophysics and solvents: The Borden experiment. The Leading Edge, 12(4), 261-267, 1993.
    〔147〕 Greenhouse, J., Gudjurgis, P., Slaine, D., & Jose, C.. Applications of surface geophysics to environmental investigations. In Symposium on the Application of Geophysics to Engineering and Environmental Problems, Orlando, April, 1995.
    〔148〕 Griffin, T. W., & Watson, K. W. A comparison of field techniques for confirming dense nonaqueous phase liquids. Groundwater Monitoring & Remediation, 22(2), 48-59, 2002.
    〔149〕 Griffiths, D. H., & Barker, R. D. Electrical imaging in archaeology. Journal of Archaeological Science, 21(2), 153-158, 1994.
    〔150〕 Griffiths, D. H., & Barker, R. D. Two-dimensional resistivity imaging and modelling in areas of complex geology. Journal of Applied Geophysics, 29(3), 211-226, 1993.
    〔151〕 Griffiths, D. H., & King, R. F. Applied geophysics for engineers and geologists. Pergamon Press, 1965.
    〔152〕 Griffiths, D. H., & Turnbull, J. A multi-electrode array for resistivity surveying. First Break, 3(7). 16-20, 1985
    〔153〕 Griffiths, D. H., & Turnbull, J. U.S. Patent No. 4,752,881. Washington, DC: U.S. Patent and Trademark Office, 1988.
    〔154〕 Griffiths, D. H., Turnbull, J., & Olayinka, A. I. Two-dimensional resistivity mapping with a computer-controlled array. First Break, 8(4), 121-129, 1990.
    〔155〕 Griffiths, D. J. Introduction to electrodynamics (Vol. 3). Upper Saddle River, NJ: prentice Hall, 1999.
    〔156〕 Grzegorczyk, T. M., Fernandez, J. P., Shubitidze, F., O'Neill, K., & Barrowes, B. E. Subsurface electromagnetic induction imaging for unexploded ordnance detection. Journal of Applied Geophysics, 79, 38-45, 2012.
    〔157〕 Guilbeault, M. A., Parker, B. L., & Cherry, J. A. Mass and flux distributions from DNAPL zones in sandy aquifers. Ground Water, 43(1), 70-86, 2005.
    〔158〕 Gunther, T., Rucker, C., & Spitzer, K. Three-dimensional modelling and inversion of DC resistivity data incorporating topography—II. Inversion. Geophysical Journal International, 166(2), 506-517, 2006.
    〔159〕 Guo, T. R., Tong, L. T., Chiang, L. W., & Yang, C. H. A fracture study by using bipole–bipole cross-well logging. Journal of Applied Geophysics, 75(2), 203-210, 2011.
    〔160〕 Halihan, T., Billiard, J., & McDonald, S. Breaking up isn’t hard to do: A view of NAPL using electrical resistivity imaging. LUST Line, 51, 21-25, 2005a.
    〔161〕 Halihan, T., Paxton, S., Graham, I., Fenstemaker, T., & Riley, M. Post-remediation evaluation of a LNAPL site using electrical resistivity imaging. Journal of Environmental Monitoring, 7(4), 283-287, 2005b.
    〔162〕 Hallof, P. G. On the interpretation of resistivity and induced polarization results. Ph.D. thesis, Massachusetts Institute of Technology, 1957.
    〔163〕 Hamzah, U., Ismail, M. A., & Samsudin, A. R. Geoelectrical resistivity and ground penetrating radar techniques in the study of hydrocarbon-contaminated soil. Sains Malaysiana, 38(3), 305-311, 2009.
    〔164〕 Harari, Z. Ground-penetrating radar (GPR) for imaging stratigraphic features and groundwater in sand dunes. Journal of Applied Geophysics, 36(1), 43-52, 1996.
    〔165〕 Hayley, K., Bentley, L. R., & Gharibi, M. Time-lapse electrical resistivity monitoring of salt-affected soil and groundwater. Water Resources Research, 45(7), 2009.
    〔166〕 Heenan, J., Porter, A., Ntarlagiannis, D., Young, L. Y., Werkema, D. D., & Slater, L. D. Sensitivity of the spectral induced polarization method to microbial enhanced oil recovery processes. Geophysics, 78(5), E261-E269, 2013.
    〔167〕 Heeren, D. M., Miller, R. B., Fox, G. A., Storm, D. E., Penn, C. J., & Halihan, T. Preferential Flow Path Effects on Subsurface Contaminant Transport in Alluvial Floodplains. In 2009 Reno, Nevada, June 21-June 24, 2009 (p.1). American Society of Agricultural and Biological Engineers, 2009.
    〔168〕 Hermozilha, H., Grangeia, C., & Matias, M. S. An integrated 3D constant offset GPR and resistivity survey on a sealed landfill—Ilhavo, NW Portugal. Journal of Applied Geophysics, 70(1), 58-71, 2010.
    〔169〕 Hsu, H. L., Yanites, B. J., Chen, C. C., & Chen, Y. G. Bedrock detection using 2D electrical resistivity imaging along the Peikang River, central Taiwan. Geomorphology, 114(3), 406-414, 2010.
    〔170〕 Hughes, L. J. Mapping contaminant-transport structures in karst bedrock with ground-penetrating radar. Geophysics, 74(6), B197-B208, 2009.
    〔171〕 Iliceto, V., Santarato, G., & Veronese, S. An approach to the identification of fine sediments by induced polarization laboratory measurements. Geophysical Prospecting, 30(3), 331-347, 1982.
    〔172〕 Ingham, M., Pringle, D., & Eicken, H. Cross-borehole resistivity tomography of sea ice. Cold Regions Science and Technology, 52(3), 263-277, 2008.
    〔173〕 Inman, J. R. Resistivity inversion with ridge regression. Geophysics, 40(5), 798-817, 1975.
    〔174〕 Johnson, T. C., Versteeg, R. J., Day-Lewis, F. D., Major, W. & Lane, J. W. Time-Lapse Electrical Geophysical Monitoring of Amendment-Based Biostimulation. Ground Water, 53(6), 920-932, 2015.
    〔175〕 Jordan, T. E., Baker, G. S., Henn, K., & Messier, J. P. Using amplitude variation with offset and normalized residual polarization analysis of ground penetrating radar data to differentiate an NAPL release from stratigraphic changes. Journal of Applied Geophysics, 56(1), 41-58, 2004.
    〔176〕 Joyce, R. A., Glaser, D. R., Werkema, D. D., & Atekwana, E. A. Spectral induced polarization response to nanoparticles in a saturated sand matrix. Journal of Applied Geophysics, 77, 63-71, 2012.
    〔177〕 Karaoulis, M., Tsourlos, P., Kim, J. H., & Revil, A. 4D time-lapse ERT inversion: introducing combined time and space constraints. Near Surface Geophysics, 12(1), 25-34, 2014.
    〔178〕 Karlık, G., & Kaya, M. A. Investigation of groundwater contamination using electric and electromagnetic methods at an open waste-disposal site: a case study from Isparta, Turkey. Environmental Geology, 40(6), 725-731, 2001.
    〔179〕 Kearey, P., Brooks, M., & Hill, I. An introduction to geophysical exploration. Blackwell Press, 2013.
    〔180〕 Keely, J. F. Performance evaluations of pump-and-treat remediations. EPA Superfund Ground Water Issue. US Environmental Protection Agency. EPA/540/4/-89/005, 1989.
    〔181〕 Keller, G. V., & Frischknecht, F. C. Electrical methods in geophysical prospecting, 1966.
    〔182〕 Kelly, W. E. Geoelectric Sounding for Delineating Ground-Water Contamination. Ground Water, 14(1), 6-10, 1976.
    〔183〕 Kemna, A., Binley, A., & Slater, L. Crosshole IP imaging for engineering and environmental applications. Geophysics, 69(1), 97-107, 2004.
    〔184〕 Khalil, M. A., & Santos, F. M. Geophysical evidence for the hydro-tectonic origin of the Sabkha El Sheikh Zwayed Lake and the shallow fresh water supplies, Northern Sinai, Egypt. Near Surface Geophysics, 13(1), 93-101, 2015.
    〔185〕 Kim, J. H., Yi, M. J., Park, S. G., & Kim, J. G. 4-D inversion of DC resistivity monitoring data acquired over a dynamically changing earth model. Journal of Applied Geophysics, 68(4), 522-532, 2009.
    〔186〕 Kim, J. W., Choi, H., & Lee, J. Y. Characterization of hydrogeologic properties for a multi-layered alluvial aquifer using hydraulic and tracer tests and electrical resistivity survey. Environmental Geology, 48(8), 991-1001, 2005.
    〔187〕 Klefstad, G., Sendlein, L. V., & Palmquist, R. C. Limitations of the electrical resistivity method in landfill investigations. Ground Water, 15(5), 418-427, 1977.
    〔188〕 Koefoed, O. Resistivity sounding measurements. Elsevier. 1979.
    〔189〕 Kruiver, P. P., Diaferia, G., & Westerhoff, W. S. Combined S-wave Reflection Seismics and ERT to Characterize Bedrock and DNAPL Presence in the Shallow Subsurface. In Near Surface Geoscience 2013, September, 2013.
    〔189〕 Kruiver, P. P., Diaferia, G., & Westerhoff, W. S. Combined S-wave Reflection Seismics and ERT to Characterize Bedrock and DNAPL Presence in the Shallow Subsurface. In Near Surface Geoscience 2013, September, 2013.
    〔190〕 LaBrecque, D. J., & Yang, X. Difference inversion of ERT data: A fast inversion method for 3-D in situ monitoring. Journal of Environmental & Engineering Geophysics, 6(2), 83-89, 2001.
    〔191〕 Lago, A. L., Elis, V. R., Borges, W. R., & Penner, G. C. Geophysical investigation using resistivity and GPR methods: a case study of a lubricant oil waste disposal area in the city of Ribeirao Preto, Sao Paulo, Brazil. Environmental Geology, 58(2), 407-417, 2009.
    〔192〕 Larsen, F., Owen, R., Dahlin, T., Mangeya, P., & Barmen, G. A preliminary analysis of the groundwater recharge to the Karoo formations, mid-Zambezi basin, Zimbabwe. Physics and Chemistry of the Earth, Parts A/B/C, 27(11), 765-772, 2002.
    〔193〕 Lazreg, H. Application of surface resistivity methods to the delineations of salt water in Shippegan. Trans. Can. Inst. Min. Metall, 75, 32-41, 1972.
    〔194〕 Lee, C. C., Tsai, L. L. Y., Yang, C. H., Wen, K. L., Wang, Z. B., Hsieh, Z. H., & Liu, H. C. The identified origin of a linear slope near Chi–Chi earthquake rupture combining 2D, 3D resistivity image profiling and geological data. Environmental Geology, 58(7), 1397-1406, 2009.
    〔195〕 Lee, C. C., Yang, C. H., Liu, H. C., Wen, K. L., Wang, Z. B., & Chen, Y. J. A Study of the hydrogeological environment of the lishan landslide area using resistivity image profiling and borehole data. Engineering Geology, 98(3), 115-125, 2008.
    〔196〕 Leeson, A., Stroo, H. F., & Johnson, P. C. Groundwater remediation today and challenges and opportunities for the future. Ground Water, 51(2), 175-179, 2013.
    〔197〕 Lekmine, G., Pessel, M., & Auradou, H. Experimental study of ERT monitoring ability to measure solute dispersion. Ground Water, 50(2), 285-295, 2012.
    〔198〕 Leroux, V., & Dahlin, T. Time-lapse resistivity investigations for imaging saltwater transport in glaciofluvial deposits. Environmental Geology, 49(3), 347-358, 2006.
    〔199〕 Leucci, G., & Greco, F. 3D ERT Survey to Reconstruct Archaeological Features in the Subsoil of the “Spirito Santo” Church Ruins at the Site of Occhiola (Sicily, Italy). Archaeology, 1(1), 1-6, 2012.
    〔200〕 Lin, C. P., Hung, Y. C., Yu, Z. H., & Wu, P. L. Investigation of abnormal seepages in an earth dam using resistivity tomography. Journal of GeoEngineering, 8(2), 61-70, 2013.
    〔201〕 Linde, N., Binley, A., Tryggvason, A., Pedersen, L. B., & Revil, A. Improved hydrogeophysical characterization using joint inversion of cross-hole electrical resistance and ground-penetrating radar traveltime data. Water Resources Research, 42(12), 2006.
    〔202〕 Liu, H., Takahashi, K., & Sato, M. Measurement of dielectric permittivity and thickness of snow and ice on a brackish Lagoon using GPR. Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, 7(3), 820-827, 2014.
    〔203〕 Llopis, J. L., & Simms, J. E. Geophysical surveys for assessing levee foundation conditions, feather river levees, Marysville, CA. In 20th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems, April, 2007.
    〔204〕 Loke, M. H. The inversion of two-dimensional resistivity data. University of Birmingham. Doctoral dissertation. 1994.
    〔205〕 Loke, M. H. Tutorial : 2-D and 3-D electrical imaging surveys, 2016.
    〔206〕 Loke, M. H., & Barker, R. D. Practical techniques for 3D resistivity surveys and data inversion1. Geophysical Prospecting, 44(3), 499-523, 1996a.
    〔207〕 Loke, M. H., & Barker, R. D. Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophysical Prospecting, 44(1), 131-152., 1996b.
    〔208〕 Loke, M. H., Acworth, I., & Dahlin, T. A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Exploration Geophysics, 34(3), 182-187, 2003.
    〔209〕 Loke, M. H., Chambers, J. E., & Ogilvy, R. D. Inversion of 2D spectral induced polarization imaging data. Geophysical prospecting, 54(3), 287-301, 2006.
    〔210〕 Loke, M. H., Chambers, J. E., Rucker, D. F., Kuras, O., & Wilkinson, P. B. Recent developments in the direct-current geoelectrical imaging method. Journal of Applied Geophysics, 95, 135-156, 2013.
    〔211〕 Loke, M. H., Dahlin, T., & Rucker, D. F. Smoothness-constrained time-lapse inversion of data from 3D resistivity surveys. Near Surf. Geophys., 12, 5-24, 2014.
    〔212〕 Loke, M. H., Wilkinson, P. B., & Chambers, J. E. Fast computation of optimized electrode arrays for 2D resistivity surveys. Computers & Geosciences, 36(11), 1414-1426, 2010.
    〔213〕 Loke, M.H. Tutorial: 2-D and 3-D Electrical Imaging Surveys. Geotomo Software, Malaysia, 2012.
    〔214〕 Lopera, O., & Milisavljevic, N. Prediction of the effects of soil and target properties on the antipersonnel landmine detection performance of ground-penetrating radar: A Colombian case study. Journal of Applied Geophysics, 63(1), 13-23, 2007.
    〔215〕 Lowrie, W. Fundamentals of geophysics. Cambridge University Press, 2007.
    〔216〕 Major, W., & Versteeg, R. Optimized Enhanced Bioremediation Through 4D Geophysical Monitoring and Autonomous Data Collection, Processing and Analysis. Final Report. ESTCP Project ER-200717, September, 2014.
    〔217〕 Manataki, M., Papadopoulos, N., Sarris, A., Agapiou, A., Themistocleous, K., & Hadjimitsis, D. G. Monitoring of Water Leakages from Pipes through Geophysical Imaging Methods, 2014.
    〔218〕 Mares, S., Zima, L., Dohnal, J., Jane, Z., & Knez, J. Geoelectrics Estimating Changes in Water Saturation of the Vadose Zone. In Near Surface 2004-10th EAGE European Meeting of Environmental and Engineering Geophysics, September, 2004.
    〔219〕 Mari, Jean-Luc. Geophysics of reservoir and civil engineering. Editions Technip, 1999.
    〔220〕 Marian, A., Giovanni, B., Roberta, R., Jose, A., Stella, L., & Joao, J. Multi-electrode 3D resistivity imaging of alfalfa root zone. European Journal of Agronomy, 31, 213-222, 2009.
    〔221〕 Martens, K., & Walraevens, K. Tracing soil and groundwater pollution with electromagnetic profiling and geo-electrical investigations. In Criminal and Environmental Soil Forensics, 181-194. Springer Netherlands, 2009.
    〔222〕 Martin-Crespo, T., Gomez-Ortiz, D., Martinez-Pagan, P., De Ignacio-San Jose, C., Martin-Velazquez, S., Lillo, J., & Faz, A. Geoenvironmental characterization of riverbeds affected by mine tailings in the Mazarron district (Spain). Journal of Geochemical Exploration, 119, 6-16, 2012.
    〔223〕 Martinelli, H. P., Robledo, F. E., Osella, A. M., & de la Vega, M. Assessment of the distortions caused by a pipe and an excavation in the electric and electromagnetic responses of a hydrocarbon-contaminated soil. Journal of Applied Geophysics, 77, 21-29, 2012.
    〔224〕 Martinez, J., Rey, J., Gutierrez, L. M., Novo, A., Ortiz, A. J., Alejo, M., & Galdon, J. M. Electrical resistivity imaging (ERI) and ground-penetrating radar (GPR) survey at the Giribaile site (upper Guadalquivir valley; southern Spain). Journal of Applied Geophysics, 123, 218-226, 2015.
    〔225〕 Martinez-Pagan, P., Cano, A. F., Ramos da Silva, G. R., & Olivares, A. B. 2-D electrical resistivity imaging to assess slurry pond subsoil pollution in the Southeastern Region of Murcia, Spain. Journal of Environmental & Engineering Geophysics, 15(1), 29-47, 2010.
    〔226〕 Martorana, R., Lombardo, L., Messina, N., & Luzio, D. Integrated geophysical survey for 3D modelling of a coastal aquifer polluted by seawater. Near Surf. Geophys, 12, 2014.
    〔227〕 Masy, T., Caterina, D., Tromme, O., Lavigne, B., Thonart, P., Hiligsmann, S., & Nguyen, F. Electrical resistivity tomography to monitor enhanced biodegradation of hydrocarbons with Rhodococcus erythropolis T902. 1 at a pilot scale. Journal of Contaminant Hydrology, 184, 1-13, 2016.
    〔228〕 Maurizio, E., Cristina, P., Francesca, R. C., Emanuele, F., & Roberto, V. Imaging of an active fault: Comparison between 3D GPR data and outcrops at the Castrovillari fault, Calabria, Italy. Interpretation, 3(3), SY57-SY66, 2015.
    〔229〕 McDowell, P. W., Barker, R. D., Butcher, A. P., Culshaw, M., Jackosn, P. D., McCann, D. M., Skipp, B. O., Matthews, S. L. & Arthur, J. C. R. Geophysics in engineering investigations, 2002.
    〔230〕 McNeill, J. D. Advances in electromagnetic methods for groundwater studies. Geoexploration, 27(1), 65-80, 1991.
    〔231〕 McNeill, J. D. Electromagnetic terrain conductivity measurement at low induction numbers, 1980a.
    〔232〕 McNeill, J. D. Electrical conductivity of soils and rocks. Geonics Limited, 1980b.
    〔233〕 McNeill, J.D. Use of electromagnetic methods for groundwater studies. In: Ward, S.N. (Ed.), Geotechnical and Environmental Geophysics: I. Review and Tutorial. Society of Exploration Geophysicists, Tulsa, OK, pp. 191–218, 1990.
    〔234〕 McNeill, J. D. Rapid, accurate mapping of soil salinity by electromagnetic ground conductivity meters. Advances in measurement of soil physical properties: Bringing Theory into Practice, 209-229, 1992.
    〔235〕 Meju, M. Environmental geophysics: the tasks ahead. Journal of Applied Geophysics, 44(2), 63-65, 2000a.
    〔236〕 Meju, M. A. Geoelectrical investigation of old/abandoned, covered landfill sites in urban areas: model development with a genetic diagnosis approach. Journal of Applied Geophysics, 44(2), 115-150, 2000b.
    〔237〕 Metwaly, M., Khalil, M. A., Al-Sayed, E. S., & El-Kenawy, A. Tracing subsurface oil pollution leakage using 2D electrical resistivity tomography. Arabian Journal of Geosciences, 6(9), 3527-3533, 2013.
    〔238〕 Milsom, J., & Eriksen, A. Field geophysics 4th edition. Wiley-Blackwell, 2011.
    〔239〕 Mitchell, N., Nyquist, J. E., Toran, L., Rosenberry, D. O., & Mikochik, J. S. Electrical resistivity as a tool for identifying geologic heterogeneities which control seepage at Mirror Lake, Nh. In 21st EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems, April, 2008.
    〔240〕 Molina, J. M., Sainato, C. M., Urricariet, A. S., Losinno, B. N., & Heredia, O. S. Bulk electrical conductivity as an indicator of spatial distribution of nitrogen and phosphorous at feedlots. Journal of Applied Geophysics, 111, 156-172, 2014.
    〔241〕 Mondelli, G., Giacheti, H. L., Boscov, M. E. G., Elis, V. R., & Hamada, J. Geoenvironmental site investigation using different techniques in a municipal solid waste disposal site in Brazil. Environmental Geology, 52(5), 871-887, 2007.
    〔242〕 Morris, E. R. Height-above-ground effects on penetration depth and response of electromagnetic induction soil conductivity meters. Computers and Electronics in Agriculture, 68(2), 150-156, 2009.
    〔243〕 Mota, R., Santos, F. M., Mateus, A., Marques, F. O., Goncalves, M. A., Figueiras, J., & Amaral, H. Granite fracturing and incipient pollution beneath a recent landfill facility as detected by geoelectrical surveys. Journal of Applied Geophysics, 57(1), 11-22, 2004.
    〔244〕 Mussett, A. E., & Khan, M. A. Looking into the earth: an introduction to geological geophysics. Cambridge University Press, 2000.
    〔245〕 Nath, B., Mallik, S. B., Stuben, D., Chatterjee, D., & Charlet, L. Electrical resistivity investigation of the arsenic affected alluvial aquifers in West Bengal, India: usefulness in identifying the areas of low and high groundwater arsenic. Environmental Earth Sciences, 60(4), 873-884, 2010.
    〔246〕 Nath, J. Ultrasonic velocities, relative permittivities and refractive indices for binary liquid mixtures of trichloroethene with pyridine and quinoline. Fluid Phase Equilibria, 109(1), 39-51, 1995.
    〔247〕 Naudet, V., Revil, A., Rizzo, E., Bottero, J. Y., & Begassat, P. Groundwater redox conditions and conductivity in a contaminant plume from geoelectrical investigations. Hydrology and Earth System Sciences Discussions, 8(1), 8-22, 2004.
    〔248〕 Negri, S., Leucci, G., & Mazzone, F. High resolution 3D ERT to help GPR data interpretation for researching archaeological items in a geologically complex subsurface. Journal of Applied Geophysics, 65(3), 111-120, 2008.
    〔249〕 Newell, C. J., & Connor, J. A. Characteristics of dissolved petroleum hydrocarbon plumes, results from four studies. Rapport technique, American Petroleum Institute, Washington DC, 1998.
    〔250〕 Newmark, R. L., Daily, W. D., Kyle, K. R., & Ramirez, A. L. Monitoring DNAPL pumping using integrated geophysical techniques. Journal of Environmental and Engineering Geophysics, 3(1), 7-13, 1998.
    〔251〕 Neyamadpour, A., Taib, S., & Abdullah, W. W. An application of three-dimensional electrical resistivity imaging for the detection of an underground waste-water system. Studia Geophysica et Geodaetica, 53(3), 389-402, 2009.
    〔252〕 Nguyen, F., Garambois, S., Jongmans, D., Pirard, E., & Loke, M. H. Image processing of 2D resistivity data for imaging faults. Journal of Applied Geophysics, 57(4), 260-277, 2005.
    〔253〕 Nimmer, R. E., Osiensky, J. L., Binley, A. M., Sprenke, K. F., & Williams, B. C. Electrical resistivity imaging of conductive plume dilution in fractured rock. Hydrogeology Journal, 15(5), 877-890, 2007.
    〔254〕 Nimmer, R. E., Osiensky, J. L., Binley, A. M., & Williams, B. C. Three-dimensional effects causing artifacts in two-dimensional, cross-borehole, electrical imaging. Journal of Hydrology, 359(1), 59-70, 2008.
    〔255〕 Niwas, S., & de Lima, O. A. Aquifer parameter estimation from suface resistivity data. Ground Water, 41(1), 94, 2003.
    〔256〕 Nobes, D.C. How important is the orientation of a horizontal loop EM system? Examples from a leachate plume and a fault zone. J. Environ. Eng. Geophys. 4 (2), 81–85, 1999.
    〔257〕 Novo, A., Vincent, M. L., & Levy, T. E. Geophysical surveys at Khirbat Faynan, an ancient mound site in southern Jordan. International Journal of Geophysics, 2012.
    〔258〕 Nyari, Z., & Kanlı, A. I. Imaging of buried 3D objects by using electrical profiling methods with GPR and 3D geoelectrical measurements. Journal of Geophysics and Engineering, 4(1), 83, 2007.
    〔259〕 Nyer, E. K. DNAPL—Stop the Madness. Groundwater Monitoring & Remediation, 19(1), 62-66, 1999.
    〔260〕 Nyquist, J. E., Freyer, P. A., & Toran, L. Stream bottom resistivity tomography to map ground water discharge. Ground Water, 46(4), 561-569, 2008.
    〔261〕 Oldenborger, G. A., Knoll, M. D., Routh, P. S., & LaBrecque, D. J. Time-lapse ERT monitoring of an injection/withdrawal experiment in a shallow unconfined aquifer. Geophysics, 72(4), F177-F187, 2007.
    〔262〕 Oldenborger, G. A., Routh, P. S., & Knoll, M. D. Model reliability for 3D electrical resistivity tomography: Application of the volume of investigation index to a time-lapse monitoring experiment. Geophysics, 72(4), F167-F175, 2007.
    〔263〕 Oldenborger, G. A., Schincariol, R. A., & Mansinha, L. Radar determination of the spatial structure of hydraulic conductivity. Groundwater, 41(1), 24-32, 2003.
    〔264〕 Oldenburg, D. W., & Li, Y. Estimating depth of investigation in dc resistivity and IP surveys. Geophysics, 64(2), 403-416, 1999.
    〔265〕 Olhoeft, G. R. Direct detection of hydrocarbon and organic chemicals with ground penetrating radar and complex resistivity. In Proc. NWWA/API Conf. Petroleum Hydrocarbons and Organic Chemicals in Ground Water-Prevention, Detection and Restoration, 1986.
    〔266〕 Olhoeft, G. R. Geophysical Detection Of Hydrocarewn And Organic Chemical Contamination. In 5th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems, April, 1992.
    〔267〕 Olofsson, B., & Lundmark, A. Monitoring the impact of de-icing salt on roadside soils with time-lapse resistivity measurements. Environmental Geology, 57(1), 217-229, 2009.
    〔268〕 Orlando, L. GPR to constrain ERT data inversion in cavity searching: Theoretical and practical applications in archeology. Journal of Applied Geophysics, 89, 35-47, 2013.
    〔269〕 Orlando, L., & Renzi, B. Time-lapse monitoring of DNAPL in a controlled cell. Near Surface Geophysics, 11(2), 129-142, 2013.
    〔270〕 Orlando, L., & Renzi, B. Electrical permittivity and resistivity time lapses of multiphase DNAPLs in a lab test. Water Resources Research, 51(1), 377-389, 2015.
    〔271〕 Orlando, L., & Viotti, P. DNAPL Detection and Monitoring Using Electrical Resistive Tomography–A Case Study in North Italy, Rho-Milan. In Near Surface 2009-15th EAGE European Meeting of Environmental and Engineering Geophysics. September, 2009.
    〔272〕 Osazuwa, I. B., & Abdulahi, N. K. Geophysical techniques for the study of ground water pollution: A review. Nigerian Journal of Physics, 20(1), 163-174, 2009.
    〔273〕 Palacky, G. J. Resistivity characteristics of geologic targets. Electromagnetic Methods in Applied Geophysics, 1, 53-129, 1988.
    〔274〕 Palmer, C. D., & Puls, R. W. Natural attenuation of hexavalent chromium in ground water and soils, 1994.
    〔275〕 Papadopoulos, N. G., Yi, M. J., Kim, J. H., Tsourlos, P., & Tsokas, G. N. Geophysical investigation of tumuli by means of surface 3D electrical resistivity tomography. Journal of Applied Geophysics, 70(3), 192-205, 2010.
    〔276〕 Papadopoulos, N., Tsigonaki, C., Guy, M., & Sarris, A. Imaging of Ancient Water Management Infrastructures through 3-D Electrical Resistivity Tomography: The Case of Eleuthern. In Near Surface Geoscience 2014-20th European Meeting of Environmental and Engineering Geophysics, September, 2014.
    〔277〕 Park, I., Lee, J., & Cho, W. Assessment of bridge scour and riverbed variation by a ground penetrating radar. In Ground Penetrating Radar, 2004. GPR 2004. Proceedings of the Tenth International Conference on (Vol. 1, pp. 411-414). IEEE, June, 2004.
    〔278〕 Pasolli, E., Melgani, F., Donelli, M., Attoui, R., & De Vos, M. Automatic detection and classification of buried objects in GPR images using genetic algorithms and support vector machines. In Geoscience and Remote Sensing Symposium. IGARSS 2008. IEEE International (Vol. 2, pp. II-525). IEEE, July, 2008.
    〔279〕 Paton, D. G. Influence of travel speed, data collection rate and pattern on EM contours (You can never have too much data, right?). In 15th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems, February, 2002.
    〔280〕 Pellerin, L. Applications of electrical and electromagnetic methods for environmental and geotechnical investigations. Surveys in Geophysics, 23(2-3), 101-132, 2002.
    〔281〕 Pennock, S. R., Abed, T. M., Curioni, G., Chapman, D. N., John, U. E., & Jenks, C. H. J. Investigation of soil contamination by iron pipe corrosion and its influence on GPR detection. In Ground Penetrating Radar (GPR), 2014 15th International Conference on (pp. 381-386). IEEE, June, 2014.
    〔282〕 Peters, L. J. The direct approach to magnetic interpretation and its practical application. Geophysics, 14(3), 290-320, 1949.
    〔283〕 Petersen, T., & al Hagrey, S. A. Mapping root zones of small plants using surface and borehole resistivity tomography. The Leading Edge, 28(10), 1220-1224, 2009.
    〔284〕 Pettersson, J. K., & Nobes, D. C. Environmental geophysics at Scott Base: ground penetrating radar and electromagnetic induction as tools for mapping contaminated ground at Antarctic research bases. Cold Regions Science and Technology, 37(2), 187-195, 2003.
    〔285〕 Pettinelli, E., Passaretta, A., Menghini, A., Annunziatellis, A., Beaubien, S. E., Clotoli, G., Lombardi, S. & Cereti, A. GPR and EM31 investigations on an active CO/sub 2/gas vent. In Ground Penetrating Radar, 2004. GPR 2004. Proceedings of the Tenth International Conference on (pp. 563-566). IEEE, June, 2004.
    〔286〕 Piegari, E., Cataudella, V., Di Maio, R., Milano, L., Nicodemi, M., & Soldovieri, M. G. Electrical resistivity tomography and statistical analysis in landslide modelling: a conceptual approach. Journal of Applied Geophysics, 68(2), 151-158, 2009.
    〔287〕 Poeter, E., & Gaylord, D. R. Influence of aquifer heterogeneity on contaminant transport at the Hanford Site. Ground Water, 28(6), 900-909, 1990.
    〔288〕 Porsani, J. L., Moutinho, L., & Assine, M. L. GPR survey in the Taquari River, Pantanal wetland, west-central Brazil. In Ground Penetrating Radar, 2004. GPR 2004. Proceedings of the Tenth International Conference on (pp. 593-596). IEEE, June, 2004.
    〔289〕 Porsani, J. L., Slob, E., Lima, R. S., & Leite, D. N. Comparing detection and location performance of perpendicular and parallel broadside GPR antenna orientations. Journal of Applied Geophysics, 70(1), 1-8, 2010.
    〔290〕 Porsani, J. L., Walter Filho, M., Elis, V. R., Shimeles, F., Dourado, J. C., & Moura, H. P. The use of GPR and VES in delineating a contamination plume in a landfill site: a case study in SE Brazil. Journal of Applied Geophysics, 55(3), 199-209, 2004.
    〔291〕 Power, C. Electrical resistivity tomography for mapping subsurface remediation (Doctoral dissertation, The University of Western Ontario), 2014.
    〔292〕Power, C., Gerhard, J. I., Tsourlos, P., Soupios, P., Simyrdanis, K., & Karaoulis, M. Improved time-lapse electrical resistivity tomography monitoring of dense non-aqueous phase liquids with surface-to-horizontal borehole arrays. Journal of Applied Geophysics, 112, 1-13, 2015.
    〔293〕Pringle, J. K., Jervis, J. R., Hansen, J. D., Jones, G. M., Cassidy, N. J., & Cassella, J. P. Geophysical Monitoring of Simulated Clandestine Graves Using Electrical and Ground Penetrating Radar Methods: 0–3 Years After Burial. Journal of forensic sciences, 57(6), 1467-1486, 2012.
    〔294〕 Property Information - Resistivity. Date: 2016.01.01. Site: http://www-materials.eng.cam.ac.uk/mpsite/properties/non-IE/resistivity.html
    〔295〕 Ramirez, A., Daily, W., LaBrecque, D., Owen, E., & Chesnut, D. Monitoring an underground steam injection process using electrical resistance tomography. Water Resources Research, 29(1), 73-87, 1993.
    〔296〕 Rampant, P., & Abuzar, M. Geophysical tools and digital elevation models: tools for understanding crop yield and soil variability. In Supersoil 2004: Proc. 3rd Australian New Zealand Soils Conf, December, 2004.
    〔297〕 Reynolds, J. M. An introduction to applied and environmental geophysics. John Wiley & Sons, 2011.
    〔298〕 Rhoades, J. D., & Corwin, D. L. Determining soil electrical conductivity-depth relations using an inductive electromagnetic soil conductivity meter. Soil Science Society of America Journal, 45(2), 255-260, 1981.
    〔299〕 Roberts, J. J., & Wildenschild, D. Electrical properties of sand–clay mixtures containing trichloroethylene and ethanol. Journal of Environmental & Engineering Geophysics, 9(1), 1-10, 2004.
    〔300〕 Robin, G. D. Q., Evans, S., & Bailey, J. T. Interpretation of radio echo sounding in polar ice sheets. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 265(1166), 437-505, 1969.
    〔301〕 Rodes, J. P., Perez-Gracia, V., & Martinez-Reguero, A. Evaluation of the GPR frequency spectra in asphalt pavement assessment. Construction and Building Materials, 96, 181-188, 2015.
    〔302〕 Rosales, R. M., Martinez-Pagan, P., Faz, A., & Moreno-Cornejo, J. Environmental monitoring using electrical resistivity tomography (ERT) in the subsoil of three former petrol stations in SE of Spain. Water, Air, & Soil Pollution, 223(7), 3757-3773, 2012.
    〔303〕 Rosato, D. V., Rosato, D. V. & Rosato, M. V. Plastic product material and process selection handbook. Elsevier, 2004.
    〔304〕 Ross, C. S. Geophysical and geochemical characterization and delineation of a crude oil spill in a highly saline environment, Doctoral dissertation, Oklahoma State University, 2013.
    〔305〕 Roy, A. Depth of investigation in Wenner, three-electrode and dipole-dipole DC resistivity methods. Geophysical Prospecting, 20(2), 329-340, 1972.
    〔306〕 Roy, A., & Apparao, A. Depth of investigation in direct current methods. Geophysics, 36(5), 943-959, 1971.
    〔307〕 Rucker, C., Gunther, T., & Spitzer, K. Three-dimensional modelling and inversion of dc resistivity data incorporating topography—I. Modelling. Geophysical Journal International, 166(2), 495-505, 2006.
    〔308〕 Rucker, D. F., Fink, J. B., & Loke, M. H. Environmental monitoring of leaks using time-lapsed long electrode electrical resistivity. Journal of Applied Geophysics, 74(4), 242-254, 2011.
    〔309〕 Rucker, D. F., Glaser, D. R., Osborne, T., & Maehl, W. C. Electrical resistivity characterization of a reclaimed gold mine to delineate acid rock drainage pathways. Mine Water and the Environment, 28(2), 146-157, 2009.
    〔310〕 Rucker, D. F., Levitt, M. T., & Greenwood, W. J. Three-dimensional electrical resistivity model of a nuclear waste disposal site. Journal of Applied Geophysics, 69(3), 150-164, 2009.
    〔311〕 Rucker, D. F., Loke, M. H., Levitt, M. T., & Noonan, G. E. Electrical-resistivity characterization of an industrial site using long electrodes. Geophysics, 75(4), WA95-WA104, 2010.
    〔312〕 Rügner, H., Finkel, M., Kaschl, A., & Bittens, M. Application of monitored natural attenuation in contaminated land management—a review and recommended approach for Europe. Environmental Science & Policy, 9(6), 568-576, 2006.
    〔313〕 Ryu, J., Morrison, H. F., & Ward, S. H. Electromagnetic fields about a loop source of current. Geophysics, 35(5), 862-896 , 1970.
    〔314〕 Słowik, M. Changes of river bed pattern and traces of anthropogenic intervention: the example of using GPR method (the Obra River, western Poland). Applied Geography, 31(2), 784-799, 2011.
    〔315〕 Saibaba, A. K., Miller, E. L., & Kitandis, P. K. A fast Kalman filter for time-lapse electrical resistivity tomography. In Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International (pp. 3152-3155). IEEE, July, 2014.
    〔316〕 Sainato, C. M., Losinno, B. N., & Malleville, H. J. Assessment of contamination by intensive cattle activity through electrical resistivity tomography. Journal of Applied Geophysics, 76, 82-91, 2012.
    〔317〕 Sambuelli, L., Socco, L. V., & Brecciaroli, L. Acquisition and processing of electric, magnetic and GPR data on a Roman site (Victimulae, Salussola, Biella). Journal of Applied Geophysics, 41(2), 189-204, 1999.
    〔318〕 Sander, K. A., Olhoeft, G. R., & Lucius, J. E. Surface and borehole radar monitoring of a DNAPL spill in 3D versus frequency, look angle and time. In Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems (Vol. 2, p. 455). The Society, April, 1992.
    〔319〕 Santarato, G., Ranieri, G., Occhi, M., Morelli, G., Fischanger, F., & Gualerzi, D. Three-dimensional electrical resistivity tomography to control the injection of expanding resins for the treatment and stabilization of foundation soils. Engineering Geology, 119(1), 18-30, 2011.
    〔320〕 Sasaki, Y., & Meju, M. A. A multidimensional horizontal-loop controlled-source electromagnetic inversion method and its use to characterize heterogeneity in aquiferous fractured crystalline rocks. Geophysical Journal International, 166(1), 59-66, 2006.
    〔321〕 Sass, O. Determination of the internal structure of alpine talus deposits using different geophysical methods (Lechtaler Alps, Austria). Geomorphology, 80(1), 45-58, 2006.
    〔322〕 Sass, O., & Krautblatter, M. Debris flow-dominated and rockfall-dominated talus slopes: Genetic models derived from GPR measurements. Geomorphology, 86(1), 176-192, 2007.
    〔323〕 Sato, M., & Thierbach, R. Analysis of a borehole radar in cross-hole mode. Geoscience and Remote Sensing, IEEE Transactions on, 29(6), 899-904, 1991.
    〔324〕 Satriani, A., Loperte, A., & Soldovieri, F. Integrated geophysical techniques for sustainable management of water resource. A case study of local dry bean versus commercial common bean cultivars. Agricultural Water Management, 162, 57-66, 2015.
    〔325〕 Sauck, W. A. A model for the resistivity structure of LNAPL plumes and their environs in sandy sediments. Journal of Applied Geophysics, 44(2), 151-165, 2000.
    〔326〕 Schmid, L., Schweizer, J., Bradford, J., & Maurer, H. A synthetic study to assess the applicability of full-waveform inversion to infer snow stratigraphy from upward-looking ground-penetrating radar data. Geophysics, 81(1), WA213-WA223, 2016.
    〔327〕 Schmutz, M., Guerin, R., Andrieux, P., & Maquaire, O. Determination of the 3D structure of an earthflow by geophysical methods: the case of Super Sauze, in the French southern Alps. Journal of Applied Geophysics, 68(4), 500-507, 2009.
    〔328〕 Schwille, F. Dense chlorinated solvents in porous and fractured media: model experiments. Boca Raton, FL, USA, 1988.
    〔329〕 Seferou, P., Soupios, P., Kourgialas, N. N., Dokou, Z., Karatzas, G. P., Candasayar, E., Papadopoulos, N., Dimitriou, V., Sarris, A., & Sauter, M. Olive-oil mill wastewater transport under unsaturated and saturated laboratory conditions using the geoelectrical resistivity tomography method and the FEFLOW model. Hydrogeology Journal, 21(6), 1219-1234, 2013.
    〔330〕 Sentenac, P., Hogson, T., Keenan, H., & Kulessa, B. Small scale monitoring of a bioremediation barrier using miniature electrical resistivity tomography. Journal of Applied Geophysics, 115, 24-31, 2015.
    〔331〕 Serway, R. A. & Jewett, J. W. Principles of physics (Vol. 1). Fort Worth, TX: Saunders College Pub, 1998.
    〔332〕 Sezgin, M., Kurugollu, F., Tasdelen, I., & Ozturk, S. Real-time detection of buried objects by using GPR. In Defense and Security, 447-455. International Society for Optics and Photonics, September, 2004.
    〔333〕 Sharma, P. V. Environmental and engineering geophysics. Cambridge University Press, 1997.
    〔334〕 Sharma, S., Cook, P., Berly, T., & Anderson, C. Australia's first geosequestration demonstration project-the CO2CRC Otway Basin Pilot Project. APPEA Journal, 259-270, 2007.
    〔335〕 Shevnin, V., Delgado-Rodriguez, O., Mousatov, A., Nakamura-Labastida, E., & Mejia-Aguilar, A. Oil pollution detection using resistivity sounding. Geofisica Internacional-Mexico, 42(4), 613-622, 2003.
    〔336〕 Shima, H. 2-D and 3-D resistivity image reconstruction using crosshole data. Geophysics, 57(10), 1270-1281, 1992.
    〔337〕 Simpson, D., Lehouck, A., Verdonck, L., Vermeersch, H., Van Meirvenne, M., Bourgeois, J., Thoen, E., & Docter, R. Comparison between electromagnetic induction and fluxgate gradiometer measurements on the buried remains of a 17th century castle. Journal of Applied Geophysics, 68(2), 294-300, 2009.
    〔338〕 Sirhan, A., & Hamidi, M. Detection of soil and groundwater domestic pollution by the electrical resistivity method in the West Bank, Palestine. Near Surface Geophysics, 11(4), 371-380, 2013.
    〔339〕 Sirieix, C., Martinez, J. F., Riss, J., & Genelle, F. Electrical resistivity characterization and defect detection on a geosynthetic clay liner (GCL) on an experimental site. Journal of Applied Geophysics, 90, 19-26, 2013.
    〔340〕 Slade, P. G. Electrical contacts: principles and applications. CRC Press, 2013.
    〔341〕 Slater, L. D., Binley, A., & Brown, D. Electrical imaging of fractures using ground-water salinity change. Ground Water, 35(3), 436-442, 1997.
    〔342〕 Slater, L. Near surface electrical characterization of hydraulic conductivity: From petrophysical properties to aquifer geometries—A review. Surveys in Geophysics, 28(2-3), 169-197, 2007.
    〔343〕 Slater, L., & Binley, A. M. Determination of hydraulically conductive pathways in fractured limestone using cross-borehole electrical resistivity tomography. European Journal of Environmental and Engineering Geophysics, 1(1), 35-52, 1996.
    〔344〕 Slater, L., Binley, A. M., Daily, W., & Johnson, R. Cross-hole electrical imaging of a controlled saline tracer injection. Journal of Applied Geophysics, 44(2), 85-102, 2000.
    〔345〕 Slater, L., Binley, A., Versteeg, R., Cassiani, G., Birken, R., & Sandberg, S. A 3D ERT study of solute transport in a large experimental tank. Journal of Applied Geophysics, 49(4), 211-229, 2002.
    〔346〕 Slob, E., Sato, M., & Olhoeft, G. Surface and borehole ground penetrating radar developments. Geophysics, 75(5), 75A103-75A120, 2010.
    〔347〕 Smallwood, I. Handbook of organic solvent properties. Butterworth Heinemann, 2012.
    〔348〕 Sneddon, K. W., Olhoeft, G. R., & Powers, M. H. Determlning And Mapplng Dnapl Saturation Values From Nonlnvasive Gpr Measurements. In 13th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems, February, 2000.
    〔349〕 Sneddon, W., Powers, M. H., Johnson, R. H., Poeter, P., Groat, C. G., & Poeter, E. P. Modeling GPR data to interpret porosity and DNAPL saturations for calibration of a 3-D multiphase flow simulation, 2002.
    〔350〕 Sogade, J. A., Scira-Scappuzzo, F., Vichabian, Y., Shi, W., Rodi, W., Lesmes, D. P., & Morgan, F. D. Induced-polarization detection and mapping of contaminant plumes. Geophysics, 71(3), B75-B84, 2006.
    〔351〕 Solla, M., Caamano, J. C., Riveiro, B., & Arias, P. A novel methodology for the structural assessment of stone arches based on geometric data by integration of photogrammetry and ground-penetrating radar. Engineering Structures, 35, 296-306, 2012.
    〔352〕 Soupios, P. M., Georgakopoulos, P., Papadopoulos, N., Saltas, V., Andreadakis, A., Vallianatos, F., Sarris, A., & Makris, J. P. Use of engineering geophysics to investigate a site for a building foundation. Journal of Geophysics and Engineering, 4(1), 94, 2007.
    〔353〕 Soupios, P., Papadopoulos, I., Kouli, M., Georgaki, I., Vallianatos, F., & Kokkinou, E. Investigation of waste disposal areas using electrical methods: a case study from Chania, Crete, Greece. Environmental Geology, 51(7), 1249-1261, 2007a.
    〔354〕 Soupios, P., Papadopoulos, N., Papadopoulos, I., Kouli, M., Vallianatos, F., Sarris, A., & Manios, T. Application of integrated methods in mapping waste disposal areas. Environmental Geology, 53(3), 661-675, 2007b.
    〔355〕 Spitzer, K., & Chouteau, M. A dc resistivity and IP borehole survey at the Casa Berardi gold mine in northwestern Quebec. Geophysics, 68(2), 453-463, 2003.
    〔356〕 Stanton, G. P., & Schrader, T. P. Surface geophysical investigation of a chemical waste landfill in northwestern Arkansas. In Presented in 107-115, February, 2001.
    〔357〕 Stollar, R. L., & Roux, P. Earth Resistivity Surveys—A Method for Defining Ground-Water Contaminationa. Ground Water, 13 (2), 145-150, 1975.
    〔358〕 Stummer, P., Maurer, H., & Green, A. G. Experimental design: Electrical resistivity data sets that provide optimum subsurface information. Geophysics, 69(1), 120-139, 2004.
    〔359〕 Sugimoto, Y. Shallow high-resolution 2-D and 3-D electrical crosshole imaging. The Leading Edge, 18(12), 1425-1428, 1999.
    〔360〕 Superfund. (n.d.). from http://www.epa.gov/superfund Retrieved October 12, 2015.
    〔361〕 Supper, R. Geoelectric Monitoring: Current Research and Perspectives for the Future. nternational Workshop Within the Frame of the FWF Project TEMPEL (TRP 175-N21) and the 7th FP European Project SafeLand, November, 2011.
    〔362〕 Suzuki, K., Anegawa, A., Endo, K., Yamada, M., Ono, Y., & Ono, Y. Performance evaluation of intermediate cover soil barrier for removal of heavy metals in landfill leachate. Chemosphere, 73(9), 1428-1435, 2008.
    〔363〕 Szalai, S., & Szarka, L. On the classification of surface geoelectric arrays. Geophysical Prospecting, 56(2), 159-175, 2008.
    〔364〕 Tabbagh, A. Applications and advantages of the Slingram electromagnetic method for archaeological prospecting. Geophysics, 51(3), 576-584, 1986.
    〔365〕 Telford, W. M., Geldart, L. P., & Sheriff, R. E. Applied geophysics 2nd edition. Cambridge University Press, 1990.
    〔366〕 Thorstad, J. L. Influence of borehole construction on LNAPL thickness measurements (Doctoral dissertation, Oklahoma State University), 2007.
    〔367〕 Tohge, M., Karube, F., Kobayashi, M., Tanaka, A., & Ishii, K. The use of ground penetrating radar to map an ancient village buried by volcanic eruptions. Journal of Applied Geophysics, 40(1), 49-58, 1998.
    〔368〕 Tong, L. T., Lee, K. H., Yeh, C. K., Hwang, Y. T., & Chien, J. M. Geophysical study of the Peinan Archaeological Site, Taiwan. Journal of Applied Geophysics, 89, 1-10, 2013.
    〔369〕 Udphuay, S., Gunther, T., Everett, M. E., Warden, R. R., & Briaud, J. L. Three-dimensional resistivity tomography in extreme coastal terrain amidst dense cultural signals: application to cliff stability assessment at the historic D-Day site. Geophysical Journal International, 185(1), 201-220, 2011.
    〔370〕 Underwood, J. E., & Eales, J. W. Detecting a buried crystalline waste mass with ground-penetrating radar. In NWWA/EPA Conf, on Surface and Borehole Geophysical Methods in Ground Water Investigations (lst, San Antonio TX), National Water Well Association, Dublin, OH (pp. 654-665), 1984.
    〔371〕 Urbini, S., Bottari, C., Marchetti, M., & Cafarella, L. The Tres Tabernae archeological site (Cisterna di Latina, Italy): new evidence revealed through an integrated geophysical investigation. Annals of Geophysics, 53(5-6), 43-49, 2011.
    〔372〕 USEPA, DNAPL Site Evaluation. U.S. EPA Contract No.68-C8-0058, 1993.
    〔373〕 USEPA, A Citizen’s Guide to Monitored Natural Attenuation, 2001.
    〔374〕 USEPA, Site Characterization Technologies for DNAPL Investigations. U.S. EPA 542-R-04-017, 2004
    〔375〕 USEPA, Report on the geoelectrical detection of surfactant enhanced aquifer remediation of PCE: Property changes in aqueous solutions due to surfactant treatment of perchloroethylene: Implications to geophysical measurements. U.S.EPA Report EPA-600-R-08-031, 2008.
    〔376〕 USEPA, Use of monitored natural attenuation for inorganic contaminants ingroundwater at superfund sites, 2015.
    〔377〕 Van Meirvenne, M., Van De Vijver, E., Vandenhaute, L., & Seuntjens, P. Investigating soil pollution with the aid of EMI and GPR measurements. In Ground Penetrating Radar (GPR), 2014 15th International Conference on (pp. 1006-1010). IEEE, June, 2014.
    〔378〕 Vaudelet, P., Schmutz, M., Pessel, M., Franceschi, M., Guerin, R., Atteia, O., Blondel, A., Ngomseu C., Galaup, S., Rejiba, F., & Begassat, P. Mapping of contaminant plumes with geoelectrical methods. A case study in urban context. Journal of Applied Geophysics, 75(4), 738-751, 2011.
    〔379〕 Vereecken, H., Kemna, A., Munch, H. M., Tillmann, A., & Verweerd, A. Aquifer characterization by geophysical methods. Encyclopedia of Hydrological Sciences, 2005.
    〔380〕 Vogelsang, D. Environmental geophysics: a practical guide. Environmental Engineering, 1995.
    〔381〕 Walford, M.E.R., Radio echo sounding through an ice shelf. Nature, 204, 317–319, 1964.
    〔382〕 Walker, S. Superfund Remedial Program’s Approach for Risk Harmonization when addressing Chemical and Radioactive Contamination. Performance & Risk Assessment Community of Practice (P&RA CoP) Steering Committee Webinar, October, 2015.
    〔383〕 Wang, T. P., Chen, C. C., Tong, L. T., Chang, P. Y., Chen, Y. C., Dong, T. H., Liu, H. C., Lin, C. P., Yang, K. H., Ho, C. J. & Cheng, S. N. Applying FDEM, ERT and GPR at a site with soil contamination: A case study. Journal of Applied Geophysics, 121, 21-30, 2015.
    〔384〕 Webb, G., Tyler, S. W., Collord, J., Van Zyl, D., Halihan, T., Turrentine, J., & Fenstemaker, T. Field-scale analysis of flow mechanisms in highly heterogeneous mining media. Vadose Zone Journal, 7(3), 899-908, 2008.
    〔385〕 Wenner, F. A method for measuring earth resistivity. Journal of the Franklin Institute, 180(3), 373-375, 1915.
    〔386〕 Werkema Jr, D., Atekwana, E. E., & Aal, G. Z. A. Spectral Induced Polarization Measurements of Nanoparticles in Laboratory Column Experiments. In SAGEEP 2015-28th Annual Symposium on the Application of Geophysics to Engineering and Environmental Problems, March, 2015.
    〔387〕 Werkema, D.D. Geolectrical Response of an Aged LNAPL Plume: Implications of Monitoring Natural Attenuaton. PhD thesis, Western Michigan University, Kalamazoo, Michigan, 2002.
    〔388〕 Werkema, D.D. Quality Assurance Project Plan for the Determination of Geoelectrical Responses to Surfactant Remediation of PCE: Stage1, Aqueous Studies , Environmental Science Division, NERL-LV, U.S. EPA, 2006.
    〔389〕 West, G. F., & Macnae, J. C. Physics of the electromagnetic induction exploration method. Electromagnetic methods in applied geophysics—applications, part A and part B: Tulsa, Society of Exploration Geophysicists, 5-45, 1991.
    〔390〕 Wiedemeier, T. H. Natural attenuation of fuels and chlorinated solvents in the subsurface. John Wiley & Sons, 1999.
    〔391〕 Wightman, W., Jalinoos, F., Sirles, P., & Hanna, K. Application of geophysical methods to highway related problems (No. FHWA-IF-04-021), 2004.
    〔392〕 Wilkinson, P. B., Chambers, J. E., Lelliott, M., Wealthall, G. P., & Ogilvy, R. D. Extreme sensitivity of crosshole electrical resistivity tomography measurements to geometric errors. Geophysical Journal International, 173(1), 49-62, 2008.
    〔393〕 Wilkinson, P. B., Meldrum, P. I., Chambers, J. E., Kuras, O., & Ogilvy, R. D. Improved strategies for the automatic selection of optimized sets of electrical resistivity tomography measurement configurations. Geophysical Journal International, 167(3), 1119-1126, 2006.
    〔394〕 Wilkinson, P. B., Meldrum, P. I., Kuras, O., Chambers, J. E., Holyoake, S. J. & Ogilvy, R. D. High-resolution electrical resistivity tomography monitoring of a tracer test in a confined aquifer. Journal of Applied Geophysics, 70(4), 268-276, 2010.
    〔395〕 Wilkinson, P. B., Meldrum, P. I., Kuras, O., Chambers, J. E., Holyoake, S. J., & Ogilvy, R. D. 4D Geoelectrical Monitoring of Natural Attenuation Processes at a Contaminated Former Gas-works Site. In Near Surface 2009-15th EAGE European Meeting of Environmental and Engineering Geophysics, September 2009.
    〔396〕 Wilkinson, P. B., Meldrum, P. I., Kuras, O., Chambers, J. E., Holyoake, S. J., & Ogilvy, R. D. High-resolution electrical resistivity tomography monitoring of a tracer test in a confined aquifer. Journal of Applied Geophysics, 70(4), 268-276, 2010.
    〔397〕 Wilson, S. R., Ingham, M., & McConchie, J. A. The applicability of earth resistivity methods for saline interface definition. Journal of Hydrology, 316(1), 301-312, 2006.
    〔398〕 Wilson, V., Power, C., Giannopoulos, A., Gerhard, J., & Grant, G. DNAPL mapping by ground penetrating radar examined via numerical simulation. Journal of Applied Geophysics, 69(3), 140-149, 2009.
    〔399〕 Winship, P., Binley, A., & Gomez, D. Flow and transport in the unsaturated Sherwood Sandstone: characterization using cross-borehole geophysical methods. Geological Society, London, Special Publications, 263(1), 219-231, 2006.
    〔400〕 Wolf, A. V. Aqueous solutions and body fluids; their concentrative properties and conversion tables, 1966.
    〔401〕 Wright, D., Bennett Jr, H. H., Ballard, J. H., Fields, M. P., DeMoss, T. A., & Butler, D. K. Portable Magnetic∕ Frequency Domain Electromagnetic Induction Sensor System Development. Journal of Environmental & Engineering Geophysics, 13(3), 237-245, 2008.
    〔402〕 Yang, C. H., Cheng, P. H., You, J. I., & Tsai, L. L. Significant resistivity changes in the fault zone associated with the 1999 Chi-Chi earthquake, west-central Taiwan. Tectonophysics, 350(4), 299-313, 2002.
    〔403〕 Yang, C. H., Wang, T. B., & Liu, H. C. Detection of dump carbide using the resistivity image profiling method: Case study. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 12(1), 40-46, 2008.
    〔404〕 Yang, C. H., Yu, C. Y., & Su, S. W. High resistivities associated with a newly formed LNAPL plume imaged by geoelectric techniques-a case study. Journal of the Chinese Institute of Engineers, 30(1), 53-62, 2007.
    〔405〕 Yang, X. Stochastic inversion of 3-D ERT data. PhD Thesis University of Arizona, 1999
    〔406〕 Yang, X., & LaBrecque, D. J. Stochastic inversion of 3D ERT data. In 11th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems, March, 1998.
    〔407〕 Yang, X., & Lagmanson, M. Comparison of 2D and 3D electrical resistivity imaging methods. In 19th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems, April, 2006.
    〔408〕 Yang, Y., & Sun, X. The Research on the Analysis and Application of Detecting Underground Civil Air Defense with GPR. World Journal of Engineering and Technology, 3(03), 52, 2015.
    〔409〕 Yaramanci, U. Geoelectric exploration and monitoring in rock salt for the safety assessment of underground waste disposal sites. Journal of Applied Geophysics, 44(2), 181-196, 2000.
    〔410〕 Yarovoy, A. G., Sai, B., Hermans, G., Van Genderen, P., Ligthart, L. P., Schukin, A. D., & Kaploun, I. V. Ground penetrating impulse radar for detection of small and shallow-buried objects. In Geoscience and Remote Sensing Symposium. IGARSS'99 Proceedings. IEEE 1999 International (Vol. 5, pp. 2468-2470). IEEE, 1999.
    〔411〕 Ye, S., Zhang, Y., & Sleep, B. E. Distribution of biofilm thickness in porous media and implications for permeability models. Hydrogeology Journal, 23(8), 1695-1702, 2015.
    〔412〕 Yeboah-Forson, A. Hydrogeophysical characterization of anisotropy in the Biscayne Aquifer using geophysical methods, 2013.
    〔413〕 Yeh, T. C. J., Lee, C. H., Hsu, K. C., & Wen, J. C. Fusion of hydrologic and geophysical tomographic surveys. Geosciences Journal, 12(2), 159-167, 2008.
    〔414〕 Yoder, R. E., Freeland, R. S., Ammons, J. T., & Leonard, L. L. Mapping agricultural fields with GPR and EMI to identify offsite movement of agrochemicals. Journal of Applied Geophysics, 47(3), 251-259, 2001.
    〔415〕 Yogeshwar, P., Tezkan, B., Israil, M., & Candansayar, M. E. Groundwater contamination in the Roorkee area, India: 2D joint inversion of radiomagnetotelluric and direct current resistivity data. Journal of Applied Geophysics, 76, 127-135, 2012.
    〔416〕 Yuan, B., Liu, S., & Lu, G. An integrated geophysical and archaeological investigation of the emperor qin shi huang mausoleum. Journal of Environmental & Engineering Geophysics, 11(2), 73-81, 2006.
    〔417〕 Zhang, G., Zhang, G. B., Chen, C. C., Chang, P. Y., Wang, T. P., Yen, H. Y., Dong, J. J., Ni, C. F., Chen, S. C., Chen, C. W., & Jia, Z. Y. Imaging Rainfall Infiltration Processes with the Time-Lapse Electrical Resistivity Imaging Method. Pure and Applied Geophysics, 1-13, 2016.
    〔418〕 Zhao, J. X., Rijo, L., & Ward, S. H. Effects of geologic noise on cross-borehole electrical surveys. Geophysics, 51(10), 1978-1991, 1986.
    〔419〕 Zheng, C., & Gorelick, S. M. Analysis of solute transport in flow fields influenced by preferential flowpaths at the decimeter scale. Ground Water,41(2), 142-155, 2003.
    〔420〕 Zhou, B. and Greenhalgh, S.A. A synthetic study on cross-hole resistivity imaging with different electrode arrays. Exploration Geophysics, 28(1), 1-5, 1997.
    〔421〕 Zhou, B., & Dahlin, T. Properties and effects of measurement errors on 2D resistivity imaging surveying. Near Surface Geophysics, 1(3), 105-117, 2003.
    〔422〕 Zogala, B., Dubiel, R., Zuberek, W. M., Rusin-Zogala, M., & Steininger, M. Geoelectrical investigation of oil contaminated soils in former underground fuel base: Borne Sulinowo, NW Poland. Environmental Geology, 58(1), 1-9, 2009.
    〔423〕 Zogala, B., Dubiel, R., Zuberek, W., Robak, M., Steininger, M., & Wzientek, K. Geoelectrical Methods for Detection of Oil Contaminations in Soils and Bioremediation Process Monitoring. In 22nd EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems, March, 2009.

    中文部分
    〔424〕 王子賓。結合地電阻影像剖面法及透地雷達法調查DNAPLs之案例研究。國立中央大學應用地質研究所,碩士論文,民國94年。
    〔425〕 王俊傑。應用多重電極排列法研究土壤及地下水。健行科技大學空間資訊與防災研究所,碩士論文,民國103年。
    〔426〕 王敏叡,運用透地雷達反射與折射法探究混凝土海堤可能的裂縫和孔洞,國立臺灣海洋大學應用地球科學研究所,碩士論文,民國100年。
    〔427〕 石宇倫。應用地電法探測掩埋實驗場滲漏之研究。健行科技大學空間資訊與防災研究所,碩士論文,民國101年。
    〔428〕 行政院環保署,全國廢棄工廠土壤及地下水污染潛勢調查計畫,2005。
    〔429〕 行政院環保署,運作中工廠土壤及地下水含氯有機溶劑污染潛勢調查及查證計畫(第1期),2010a。
    〔430〕 行政院環保署,98-99年度土壤及地下水污染事件應變調查、查證及技術支援工作計畫,2010b。
    〔431〕 行政院環保署,土壤及地下水污染整治十年有成專刊,2011a。
    〔432〕 行政院環保署,運作中工廠土壤及地下水含氯有機溶劑污染潛勢調查及查證計畫(第2期),2011b。
    〔433〕 行政院環保署,運作中工廠土壤及地下水含氯有機溶劑污染潛勢調查及查證計畫(第3期),2012a。
    〔434〕 行政院環保署,列管非法棄置場址土壤及地下水污染調查計畫(第2期),2012b。
    〔435〕 行政院環保署,加油站土壤及地下水污染調查計畫(第7期),2012c。
    〔436〕 行政院環保署,全國重金屬高污染潛勢農地之管制及調查計畫,2012d。
    〔437〕 行政院環保署,農地土壤母質品質背景調查計畫,2012e。
    〔438〕 行政院環保署,運作中工廠土壤及地下水含氯有機溶劑污染潛勢調查及查證計畫(第4期),2013a。
    〔439〕 行政院環保署,全國廢棄工廠土壤及地下水污染潛勢總體檢第一期計畫,2013b。
    〔440〕 行政院環保署,地球物理探勘應用於土壤及地下水污染場址之調查驗證作業及整治技術評估計畫,2014a。
    〔441〕 行政院環保署,高污染潛勢工業區污染源調查及管制計畫 (第3期),2014b。
    〔442〕 行政院環保署,地下儲槽系統網路申報資料查核、諮詢及勾稽計畫,2015a。
    〔443〕 行政院環保署,全國工業區土壤及地下水品質管理計畫(第三期),2015b。
    〔444〕 行政院環保署,廢棄工廠土壤及地下水污染潛勢評估及調查計畫(甲),2015c。
    〔445〕 吳德中,桃園中壢濱海地區之地電阻測勘研究,國立中央大學地球物理研究所,碩士論文,民國68年。
    〔446〕 李正兆,整合地電阻法與水文地質調查於崩塌地滑動之機制研究,國立中央大學地球物理研究所,博士論文,民國97年。
    〔447〕 李冠樺,電容耦合地電阻探測系統應用於地下管線與坑道之研究,國立中央大學地球物理研究所,碩士論文,民國95年。
    〔448〕 呂崇嘉,直流電阻法應用於水文地質研究,國立中央大學地球物理研究所,博士論文,民國82年。
    〔449〕 季松青,地電阻法應用於水文參數推估之研究,國立中央大學應用地質研究所,碩士論文,民國84年。
    〔450〕 林彥之,應用地電阻影像剖面法與水平迴圈電磁法於地下掩埋物調查之研究,健行科技大學空間資訊與防災研究所,碩士論文,民國100年。
    〔451〕 林哲毅,土壤電阻率與含水特性關係之探討,國立交通大學土木工程學系,碩士論文,民國98年。
    〔452〕 林澤宗,地電法於地下掩埋物調查之研究,國立中央大學地球科學系,碩士論文,民國100年。
    〔453〕 姚奕全,應用地電阻法於崩積層含水特性調查與監測之初探,國立交通大學土木工程學系,碩士論文,民國97年。
    〔454〕 柯文凱,透地雷達於剛性鋪面檢測之應用,國立中央大學地球物理研究所,碩士論文,民國91年。
    〔455〕 洪彥豪,應用地電阻影像剖面法於湖口斷層之研究,國立中央大學應用地質研究所,碩士論文,民國93年。
    〔456〕 洪瑛鈞,地電阻影像探測在地工調查之應用與問題探討,國立交通大學土木工程學系,博士論文,民國102年。
    〔457〕 曹宏志,應用地電阻影像剖面法於滑動邊坡之研究,健行科技大學空間資訊與防災研究所,民國97年。
    〔458〕 莊詠傑,應用自然電位法於土壤及地下水污染場址的監測研究,國立中央大學地球科學系,碩士論文,民國105年。
    〔459〕 許芳鳴,以地電阻影像法探討地滑敏感區電阻率構造與環境因子之關係,國立中央大學地球科學系,碩士論文,民國104年。
    〔460〕 郭泰融,整合地球物理方法研究變質岩區地熱構造-以金崙地熱區為例,國立中央大學地球物理研究所,博士論文,民國97年。
    〔461〕 陳平護,台灣西中部第四系之電性地層學研究,國立中央大學地球物理研究所,博士論文,民國75年。
    〔462〕 陳宜傑,應用地電阻法於土石流地滑之研究,國立中央大學應用地質研究所,碩士論文,民國93年。
    〔463〕 陳冠豪。應用地電法於運作中工廠污染調查與監測之研究。健行科技大學空間資訊與防災研究所,碩士論文,民國101年。
    〔464〕 陳建志,大地電磁法應用於台灣地區地殼電性構造之研究,國立中央大學地球物理研究所,博士論文,民國87年。
    〔465〕 陳軍韜。應用地電法探討地下掩埋體之污染。清雲科技大學空間資訊與防災研究所,碩士論文,民國99年。
    〔466〕 黃清峰,濁水溪沖積扇水文地質參數與地電參數相關性之研究,國立中央大學應用地質研究所,碩士論文,民國85年。
    〔467〕 楊証傑,ERT 在地工調查應用之問題評析與空間解析度探討,國立交通大學土木工程學系,博士論文,民國94年。
    〔468〕 溫國樑,桃園中壢地區電阻測勘的研究,國立中央大學地球物理研究所,碩士論文,民國68年。
    〔469〕 葛其民,透地雷達於鋪面之應用,國立中央大學應用地質研究所,碩士論文,民國89年。
    〔470〕 葛岳淵,車籠域斷層與梅山斷層之地電研究,國立中央大學地球物理研究所,博士論文,民國99年。
    〔471〕 董倫道,地電阻法與電磁法之綜合解釋,國立中央大學地球物理研究所,博士論文,民國76年。
    〔472〕 董倫道,地球物理方法在環境污染偵測上的應用個案探討。1997中國地球物理學會成果發表會論文集,pp.207-210,1997。
    〔473〕 董倫道,楊潔豪。地球物理新技術在大地工程之應用。地工技術, (69), 5-14, 1998。
    〔474〕 劉興昌,活動斷層電性研究 - 以湖口、新城及山腳斷層為例,國立中央大學地球物理研究所,博士論文,民國98年。
    〔475〕 蔣加勤,應用地電阻影像剖面法於紅菜坪地滑區之研究,健行科技大學空間資訊與防災研究所,民國97年。
    〔476〕 蔡艾迪。應用地電阻影像法偵檢DNAPL污染。清雲科技大學空間資訊與防災研究所,碩士論文,民國96年。
    〔477〕 鄭智鴻。應用地電阻影像剖面法於 DNAPLs 污染場址調查之研究。健行科技大學空間資訊與防災研究所,碩士論文,民國101年。
    〔478〕 鄭榮卿,併合地球物理法在工程上及地下水調查之應用,國立中央大學地球物理研究所,碩士論文,民國85年。
    〔479〕 羅男和,應用地電阻影像剖面法偵檢邊坡滑動可能性之案例研究,健行科技大學空間資訊與防災研究所,民國95年。
    〔480〕 蘇尚文,整合地電法應用於地下污染調查之研究,國立中央大學應用地質研究所,碩士論文,民國86年。
    〔481〕 地電阻之井測電極裝置,中華民國專利證書新型第M439802號,2012。

    QR CODE
    :::