| 研究生: |
陳溥 Pu Chen |
|---|---|
| 論文名稱: |
300mm矽晶圓批量清洗之數值模擬分析 Numerical Analysis of 300mm Wafer Batch Cleaning |
| 指導教授: |
陳志臣
Jyh-Chen Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 批量清洗 、晶圓清洗槽 、顆粒 |
| 外文關鍵詞: | batch cleaning, wafer rising tank, particle |
| 相關次數: | 點閱:23 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
矽晶圓批量清洗中清洗槽內的流體流動情形極為重要,流體的流動情形影響了矽晶圓的潔淨度,矽晶圓潔淨度也影響了後續製程以及產品最後的良率,故為了瞭解清洗槽內流體流動情形,建立數值模型,透過數值模型深入探討,並嘗試最佳化清洗槽。
關於顆粒附著在晶圓表面上的去除機理較少文獻探討,因此本研究首先詳細解釋顆粒吸附在晶圓表面上所有的力,以及如何利用流體去除顆粒,再提出一種新穎的驗證模擬有效性的方法,此方法是透過顆粒去除機理分別計算矽顆粒(Si)與二氧化矽顆粒(SiO2)剪應力理論值3.190×〖10〗^(-3) Pa與6.387×〖10〗^(-4) Pa,再搭配現有的顆粒殘留分布與模擬結果的晶圓表面剪應力做比對,確定該數值模型的有效性,接著詳細探討清洗槽內流體流動情形,並詳加說明,再透過此模型進行流量改變以及幾何的改變,透過上述研究確立了,改變清洗槽部件的幾何是一種有效最佳化清洗槽內流動的方式。
In the batch cleaning of silicon wafers, the fluid flow in the cleaning tank is important. It affects the cleanliness of the silicon wafer, the subsequent production process, and the final product yield. In order to analyze the fluid flow in the cleaning tank, we build a numerical model to investigate in depth, and try to optimize the cleaning tank.
There is a lack of information about removal mechanism of particles attached to the wafer surface. Therefore, this study first explains all the forces of particle attached on wafer surface, and how to remove particles by fluid flow. And then proposes a novel method to verify the effectiveness of the simulation. It aims to calculate the theoretical value of the shear stress through the particle removal mechanism. Next, we compare that with the existing particle residual distribution and the simulation result of the wafer surface shear stress, to determine the validity of the numerical model. After that, we discuss fluid flow situation in the cleaning tank and give a detailed explanation. Finally, we change the flow rate and geometry in this model to figure out which way is benefit for batch cleaning. By altering different parameters mentioned above, we conclude that changing the geometry of the cleaning tank components is an effective way to optimize the cleaning efficiency.
[1] H.C.Hamaker, Van Der Waals attraction between spherical particles, Physica, Physica,4(10),1058-1072(1973).
[2]Changkun Li, Dewen Zhao, Lile Xie, Xinchun Lu, Mechanism Analysis of Nanoparticle Removal Induced by the Marangoni-driven Flow in Post-CMP Cleaning,ESC,9(2),(2020).
[3]A.R.Karen, K. Werner, Silicon Wafer Cleaning Technology, (2018).
[4]G.M. Burdick, N.S. Berman, S.P.Beaudoin, Hydrodynamic particle removal from surfaces, Nanoparticle Research 488,453-465(2001).
[5]J.C.J.Van der Donck, M.L Zoeteweij, R.Versluis, Particle Removal in Linear Shear Flow: Model Prediction and Experimental Validation, Adhesion Science and Technology,23(6),899-911(2009).
[6] Kuide Qin, Yongcheng Li, Mechanisms of particle removal from silicon wafer surface in wetchemical cleaning process, Colloid and Interface Science, 261(2) ,569-574(2003).
[7] A. Moldovan, B. Mandlmeier, C. Müller, L. Zimmer, M. Menschick, Fluid Dynamic Modeling of an Industrial Wet Chemical Process Bath for the Production of Silicon Solar Cells, COMSOL(2017).
[8] Hitoshi Habuka, Masahiko Aihara, Masayuki Kato, Shinji Kobayashi, Takashi Takeuchi, Water Motion in Carrierless Wet Station,The Electrochemical Society,151(12),G814(2004).
[9] Bivas Panigrahi, Chia-Yuan Chen, Kok-Shen Chong, Tsung-Yi Lu, Wei-Hsien Li, Yi-Li Liu, Hydrodynamic Investigation of a Wafer Rinse Process Through Numerical Modeling and Flow Visualization Methods, Fluids Engineering,140,1-8(2018).
[10] Akihiro Goto, Hitoshi Habuka, Kento Miyazaki, Miya Matsuo, Water Outlet Design of Wet Cleaning Bath for 300-mm Diameter Silicon Wafers, ECS,7(9), N123-N127(2018).
[11] Kuide Qin, Yongcheng Li, Mechanisms of particle removal from silicon wafer surface in wet chemical cleaning process, Colloid and Interface Science,261(2),569-574(2003).
[12] R. G. Cox, A. J. Brenner, Slow viscous motion of a sphere parallel to a plane wall-I Motion through a quiescent fluid, Chemical Engineering Science,22(4),637-651(1967).
[13] M. E.O'Neill, A sphere in contact with a plane wall in a slow linear shear flow, Chemical Engineering Science,23(11),1293-1298(1968).
[14] J. Visser, The Adhesion of Colloidal Polystyrene Particles to Cellophane as a Function of pH and Ionic Strength, Colloid and Interface Science, 55(3),664-677(1976).