跳到主要內容

簡易檢索 / 詳目顯示

研究生: 阮氏貞
Nguyen Thi Trinh
論文名稱: The Effect of Fluid Drainage on The Frictional Strength of Water-Saturated Kaolinite During Seismic Slip
指導教授: 郭力維
Li-Wei Kuo
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 地球科學學系
Department of Earth Sciences
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 71
中文關鍵詞: 岩石摩擦地震滑移流體排水率高嶺土飽和水熱增壓效應熱崩解效應
外文關鍵詞: rock friction, seismic slip, fluid drainage, kaolinite, water-saturated, thermal pressurization, thermal decomposition
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 位於斷層滑動帶旁的破壞帶普遍存在裂縫與裂隙,可視為流體的通道或屏障。當斷層錯移發生時,破壞帶排水效率的好壞可能影響滑動帶中含水飽和度的差異,並促進不同的機制而導致斷層弱化。然而,排水效率對斷層強度(行為)的影響仍尚未釐清。因此,本論文利用特殊設計之底座,對含飽和水的高嶺土進行排水與不排水的旋剪岩石摩擦試驗(rotary shear rock friction experiment)進行研究。在不排水條件下,我們利用兩種不同的濾紙模擬破裂帶不同的排水效率。所有的實驗條件皆設定為滑移速率每秒一公尺,正向應力為十百萬帕,總滑移距離為五至七公尺。實驗結果顯示:(1)在不排水條件下,摩擦係數(剪應力與正向應力之比率)上升到一個峰值後明顯的下降至穩態,並與樣品膨脹度有關。在排水條件下,摩擦係數的趨勢在實驗初始時與不排水條件相似,但隨著滑移距離的增長與樣品持續的壓密呈現逐漸再強化的趨勢;(2)滑移弱化距離(slip weakening distance)在不排水與高效率排水的條件下,數值介於2.43與2.09公尺之間,而在低效率排水條件下為1.41。實驗結束後,高嶺土的顏色由米白色轉變為灰色,並在排水條件下於滑動面上觀察到斷層擦痕。微觀構造觀察顯示純壓密與不排水條件實驗後樣品的黏土顆粒方向皆隨機分佈,而在排水條件下,可觀察到R剪切及Y剪切、燒結構造(sintering texture)與顆粒粒徑減小(grain size reduction)之特徵。另外,高效率排水條件下出現的流紋組織(flow structure)與氣泡的形成也暗示了熱崩解效應的發生。本研究總結如下(1)熱增壓效應為本實驗條件中的主要弱化機制;(2)不同排水條件會導致不同的摩擦強度演化(與滑動面上含水量的多寡影響的摩擦熱有關)及相關機制(高嶺土的流體化作用(fluidization)或熱崩解作用)。


    Damage zone adjacent to slip zones commonly consist of fractures and fissures and can be either conduit or barrier for fluid flow. During fault movement, the various fluid drainage efficiency of the damage zone may affect the state of water saturation of the slipping zone and can result in different mechanisms operated for fault weakening, yet its effect on the fault strength (behavior) is still poorly understood. In this study, we conducted rotary shear rock friction experiments on water-saturated kaolinite gouge under undrained and drained conditions by using a newly designed pressure vessel. Under drained condition, we used two kinds of filter paper to simulate different efficiency of fluid drainage of the damage zone. All experiments were conducted at a velocity of 1 m/s, a normal stress of 10 MPa with total displacement of ~ 5–7 m. The results show that (1) under undrained condition, the friction coefficient (the ratio of shear stress/normal stress) achieves a peak value, then dramatically decreases to a steady-state associated with sample dilatancy. Under drained condition, the initial stage of frictional trend is similar to the one under undrained condition, but gradually restrengthens with slip accompanied with gouge compaction; (2) the slip-weakening distance D_c is varied from 2.43±0.71 m to 2.09±0.51 m under undrained and high-efficient-drainage conditions, respectively, and 1.14±0.51 m under less-efficient-drainage condition. After experiments, the color of kaolinite was changed from milky-white to grey-dark color, and slicken-side textures were observed on the slipping surface only under drained condition. Microstructural observations showed the similarity between the products from compaction and under undrained condition as randomly oriented clay fabrics. Under drained condition, the network of R-shear and Y-shear, sintering texture, and grain size reduction were observed. In particular, the occurrences of flow texture and vesicle under high-efficient-drainage condition imply the presence of thermal decomposition. We surmise that (1) thermal pressurization is the main weakening mechanism at our experimental conditions, and (2) various drainage conditions would result in various frictional evolution (as a result of frictional heat on different amounts of water within slip surface) and the associated processes (kaolinite fluidization or thermal decomposition).

    摘要 i ABSTRACT ii ACKNOWLEDGMENTS iii TABLE OF CONTENTS iv LIST OF FIGURES vi CHAPTER 1 INTRODUCTION 1 CHAPTER 2 METHODS AND ANALYSIS 4 2.1. Rock friction experiment 4 2.1.1. Sample preparation 4 2.1.2. Experimental procedure and data acquisition 5 2.2. Microstructures 8 2.2.1. Petrographic thin section 8 2.2.2. Scanning Electron Microscope (SEM) 8 CHAPTER 3 RESULTS 10 3.1. Mechanical data 10 3.2. Microstructural observation 17 3.2.1. Deformed kaolinite gouge after shearing descriptions 17 3.2.2. Microstructure descriptions 18 CHAPTER 4 DISCUSSION 28 4.1. Comparison to previous studies 28 4.2. The effect of fluid drainage and associating to mechanism 30 4.2.1. Stage I 30 4.2.2. Stage II 31 4.2.3. Stage III 33 4.3. Implication for natural faults 39 4.4. Future works 42 CHAPTER 5 CONCLUSIONS 43 REFERENCES 44 APPENDIX 1 49 APPENDIX 2 52 APPENDIX 3 53

    Aretusini, S., Meneghini, F., Spagnuolo, E., Harbord, C. W., & Di Toro, G. (2021). Fluid pressurisation and earthquake propagation in the Hikurangi subduction zone. Nature communicaton. https://doi.org/10.1038/s41467-021-22805-w
    Behnsen, J., & Faulkner, D. R. (2012). The effect of mineralogy and effective normal stress on frictional strength of sheet silicates. Journal of Structural Geology, 42, 49-61.
    Boullier, A.-M., Yeh, E.-C., Boutareaud, S., Song, S.-R., & Tsai, C.-H. (2009). Microscale anatomy of the 1999 Chi-Chi earthquake fault zone. Geochemistry, Geophysics, Geosystems, 10(3). https://doi.org/10.1029/2008gc002252
    Boulton, C., Yao, L., Faulkner, D. R., Townend, J., Toy, V. G., Sutherland, R., ... & Shimamoto, T. (2017). High-velocity frictional properties of Alpine Fault rocks: Mechanical data, microstructural analysis, and implications for rupture propagation. Journal of Structural Geology, 97, 71-92.
    Brantut, N., & Mitchell, T. M. (2018). Assessing the Efficiency of Thermal Pressurization Using Natural Pseudotachylyte-Bearing Rocks. Geophysical Research Letters, 45(18), 9533-9541. https://doi.org/10.1029/2018gl078649
    Brantut, N., Schubnel, A., Rouzaud, J. N., Brunet, F., & Shimamoto, T. (2008). High-velocity frictional properties of a clay-bearing fault gouge and implications for earthquake mechanics. Journal of Geophysical Research, 113(B10). https://doi.org/10.1029/2007jb005551
    Caine, J. S., Evans, J. P., & Forster, C. B. (1996). Fault zone architecture and permeability structure. Geology, 24(11), 1025-1028.
    Chen, J., Niemeijer, A. R., & Fokker, P. A. (2017a). Vaporization of fault water during seismic slip. Journal of Geophysical Research: Solid Earth, 122(6), 4237-4276.
    Chen, J., Niemeijer, A., Yao, L., & Ma, S. (2017b). Water vaporization promotes coseismic fluid pressurization and buffers temperature rise. Geophysical Research Letters, 44(5), 2177-2185.
    Choi, J.-H., Edwards, P., Ko, K., & Kim, Y.-S. (2016). Definition and classification of fault damage zones: A review and a new methodological approach. Earth-Science Reviews, 152, 70-87.
    Cornelio, C., Passelègue, F. X., Spagnuolo, E., Di Toro, G., & Violay, M. (2020). Effect of fluid viscosity on fault reactivation and coseismic weakening. Journal of Geophysical Research: Solid Earth, 125(1), e2019JB018883.
    Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., Ferri, F., Cocco, M., & Shimamoto, T. (2011). Fault lubrication during earthquakes. Nature, 471(7339), 494-498. https://doi.org/10.1038/nature09838
    Goldsby, D. L., & Tullis, T. E. (2011). Flash heating leads to low frictional strength of crustal rocks at earthquake slip rates. Science, 334(6053), 216-218.
    Han, R., Hirose, T., Jeong, G. Y., Ando, J.-i., & Mukoyoshi, H. (2014). Frictional melting of clayey gouge during seismic fault slip: Experimental observation and implications. Geophysical Research Letters, 41(15), 5457-5466. https://doi.org/10.1002/2014gl061246
    Han, R., Shimamoto, T., Ando, J.-i., & Ree, J.-H. (2007). Seismic slip record in carbonate-bearing fault zones: An insight from high-velocity friction experiments on siderite gouge. Geology, 35(12), 1131-1134.
    Hirono, T., Sakaguchi, M., Otsuki, K., Sone, H., Fujimoto, K., Mishima, T., ... & Song, S. R. (2008). Characterization of slip zone associated with the 1999 Taiwan Chi-Chi earthquake: X-ray CT image analyses and microstructural observations of the Taiwan Chelungpu fault. Tectonophysics, 449(1-4), 63-84.
    Hirose, T., & Shimamoto, T. (2005). Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting. Journal of Geophysical Research: Solid Earth, 110(B5).
    Hunfeld, L. B., Chen, J., Niemeijer, A. R., Ma, S., & Spiers, C. J. (2021). Seismic slip‐pulse experiments simulate induced earthquake rupture in the Groningen gas field. Geophysical Research Letters, e2021GL092417.
    Hung, C. C., Kuo, L. W., Spagnuolo, E., Wang, C. C., Di Toro, G., Wu, W. J., ... & Hsieh, P. S. (2019). Grain fragmentation and frictional melting during initial experimental deformation and implications for seismic slip at shallow depths. Journal of Geophysical Research: Solid Earth, 124(11), 11150-11169.
    Kuo, L. W., Hsiao, H. C., Song, S. R., Sheu, H. S., & Suppe, J. (2014). Coseismic thickness of principal slip zone from the Taiwan Chelungpu fault Drilling Project-A (TCDP-A) and correlated fracture energy. Tectonophysics, 619, 29-35.
    Kuo, L.-W., Song, S.-R., Huang, L., Yeh, E.-C., & Chen, H.-F. (2011). Temperature estimates of coseismic heating in clay-rich fault gouges, the Chelungpu fault zones, Taiwan. Tectonophysics, 502(3-4), 315-327. https://doi.org/10.1016/j.tecto.2011.02.001
    Kuo, L. W., Wu, W. J., Kuo, C. W., Smith, S. A., Lin, W. T., Wu, W. H., & Huang, Y. H. (2021). Frictional strength and fluidization of water-saturated kaolinite gouges at seismic slip velocities. Journal of Structural Geology, 104419.
    Kuo, L. W., Song, S. R., Yeh, E. C., & Chen, H. F. (2009). Clay mineral anomalies in the fault zone of the Chelungpu Fault, Taiwan, and their implications. Geophysical Research Letters, 36(18).
    Li, H., Xue, L., Brodsky, E. E., Mori, J. J., Fulton, P. M., Wang, H., ... & Xu, Z. (2015). Long-term temperature records following the Mw 7.9 Wenchuan (China) earthquake are consistent with low friction. Geology, 43(2), 163-166.
    Li, H., Wang, H., Xu, Z., Si, J., Pei, J., Li, T., Huang, Y., Song, S.-R., Kuo, L.-W., Sun, Z., Chevalier, M.-L., & Liu, D. (2013). Characteristics of the fault-related rocks, fault zones and the principal slip zone in the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1). Tectonophysics, 584, 23-42. https://doi.org/10.1016/j.tecto.2012.08.021
    Ma, K. F., Tanaka, H., Song, S. R., Wang, C. Y., Hung, J. H., Tsai, Y. B., Mori, J., Song, Y. F., Yeh, E. C., Soh, W., Sone, H., Kuo, L. W., & Wu, H. Y. (2006). Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project. Nature, 444(7118), 473-476. https://doi.org/10.1038/nature05253
    Mizoguchi, K., Hirose, T., Shimamoto, T., & Fukuyama, E. (2007). Reconstruction of seismic faulting by high-velocity friction experiments: An example of the 1995 Kobe earthquake. Geophysical Research Letters, 34(1). https://doi.org/10.1029/2006gl027931
    Niemeijer, A., Di Toro, G., Griffith, W. A., Bistacchi, A., Smith, S. A. F., & Nielsen, S. (2012). Inferring earthquake physics and chemistry using an integrated field and laboratory approach. Journal of Structural Geology, 39, 2-36. https://doi.org/10.1016/j.jsg.2012.02.018
    Niemeijer, A., Fagereng, Å., Ikari, M., Nielsen, S., & Willingshofer, E. (2020). Faulting in the laboratory. In Understanding Faults (pp. 167-220). https://doi.org/10.1016/b978-0-12-815985-9.00005-9
    Pham, Q. V., (2019). Velocity-dependent frictional properties of kaolinite clay underdifferent drainage conditions with temperature measurement. Master dissertation, National Central University.
    Rattez, H., & Veveakis, M. (2020). Weak phases production and heat generation control fault friction during seismic slip. Nature communications, 11(1), 1-8.
    Rice, J. R. (2006). Heating and weakening of faults during earthquake slip. Journal of Geophysical Research: Solid Earth, 111(B5), n/a-n/a. https://doi.org/10.1029/2005jb004006
    Sawai, M., Shimamoto, T., & Togo, T. (2012). Reduction in BET surface area of Nojima fault gouge with seismic slip and its implication for the fracture energy of earthquakes. Journal of Structural Geology, 38, 117-138.
    Scholz, C. H. (1998). Earthquakes and friction laws. Nature, 391(6662), 37-42. https://doi.org/10.1038/34097
    Seyler, C. E., Kirkpatrick, J. D., Savage, H. M., Hirose, T., & Faulkner, D. R. (2020). Rupture to the trench? Frictional properties and fracture energy of incoming sediments at the Cascadia subduction zone. Earth and Planetary Science Letters, 546. https://doi.org/10.1016/j.epsl.2020.116413
    Sibson, R. H. (1986). Brecciation processes in fault zones: inferences from earthquake rupturing. Pure and Applied Geophysics, 124(1), 159-175.
    Sone, H., & Shimamoto, T. (2009). Frictional resistance of faults during accelerating and decelerating earthquake slip. Nature Geoscience, 2(10), 705-708. https://doi.org/10.1038/ngeo637
    Song, S.-R., Kuo, L.-W., Yeh, E.-C., Wang, C.-Y., Hung, J.-H., & Ma, K.-F. (2007). Characteristics of the Lithology, Fault-Related Rocks and Fault Zone Structures in TCDP Hole-A. Terrestrial, Atmospheric and Oceanic Sciences, 18(2). https://doi.org/10.3319/tao.2007.18.2.243(tcdp)
    Sperinck, S., Raiteri, P., Marks, N., & Wright, K. (2011). Dehydroxylation of kaolinite to metakaolin—a molecular dynamics study. J. Mater. Chem., 21(7), 2118-2125. https://doi.org/10.1039/c0jm01748e
    Tanikawa, W., Sakaguchi, M., Tadai, O., & Hirose, T. (2010). Influence of fault slip rate on shear-induced permeability. Journal of Geophysical Research, 115(B7). https://doi.org/10.1029/2009jb007013
    Tanikawa, W., & Shimamoto, T. (2009). Frictional and transport properties of the Chelungpu fault from shallow borehole data and their correlation with seismic behavior during the 1999 Chi‐Chi earthquake. Journal of Geophysical Research: Solid Earth, 114(B1).
    Togo, T., Yao, L., Ma, S., & Shimamoto, T. (2016). High‐velocity frictional strength of Longmenshan fault gouge and its comparison with an estimate of friction from the temperature anomaly in WFSD‐1 drill hole. Journal of Geophysical Research: Solid Earth, 121(7), 5328-5348.
    Tran, Q. T., (2021). The relationship of kaolinite friction characteristics and temperature changing in submerged conditions. Master dissertation, National Central University.
    Varga, G. (2007). The structure of kaolinite and metakaolinite. Epitoanyag, 59(1), 6-9.
    Xue, L., Li, H. B., Brodsky, E. E., Xu, Z. Q., Kano, Y., Wang, H., ... & Huang, Y. (2013). Continuous permeability measurements record healing inside the Wenchuan earthquake fault zone. Science, 340(6140), 1555-1559.
    Yang, C. M., Yu, W. L., Dong, J. J., Kuo, C. Y., Shimamoto, T., Lee, C. T., ... & Miyamoto, Y. (2014). Initiation, movement, and run-out of the giant Tsaoling landslide—What can we learn from a simple rigid block model and a velocity–displacement dependent friction law?. Engineering Geology, 182, 158-181.
    Yao, L., Ma, S., Shimamoto, T., & Togo, T. (2013). Structures and high-velocity frictional properties of the Pingxi fault zone in the Longmenshan fault system, Sichuan, China, activated during the 2008 Wenchuan earthquake. Tectonophysics, 599, 135-156.
    Yeh, E. C., Sone, H., Nakaya, T., Ka-Hao, I., Sheng-Rong, S., Hung, J. H., ... & Kinoshita, M. (2007). Core description and characteristics of fault zones from Hole-A of the Taiwan Chelungpu-Fault Drilling Project. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 18(2), 327.

    QR CODE
    :::