| 研究生: |
賴奇郁 Chi-Yu Lai |
|---|---|
| 論文名稱: |
超寬頻系統多頻帶發射機及寬頻主動90°相位差電路設計 Design of UWB Multi-Band Transmitter and Broad-Band Active 90° Phase-Difference Circuits |
| 指導教授: |
邱煥凱
Hwann-Kaeo Chiou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 80 |
| 外文關鍵詞: | phase shifter, mixer, vco, CMOS, UWB |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於無線通訊及傳輸的便利,無線系統的應用已經普遍且深入我們的生活領域。隨著越來越多的無線傳輸應用,現今對大量資料傳輸系統的需求已經變的更加迫切,因此,我們需要更高的資料傳輸速率系統規範。超寬頻系統就是一個很顯著的高資料傳輸速率系統規範,具備3.1 GHz到10.6 GHz,共計7.5 GHz的頻寬系統應用規範。而跳頻式多頻帶正交分頻多工技術 (BH-MB-OFDM) 是被使用於應用在高資料傳輸速率存取的用途。
本論文主要研究內容為應用在超寬頻模組Group-A頻段發射端LO產生器之壓控振盪器和混頻器設計,以及應用在單頻帶混頻器的寬頻主動90°相位差電路設計。論文中電路皆以台積電0.18微米互補式金氧半導體製程。
壓控振盪器的設計中心頻率為3.96 GHz,量測結果漂移到3.83 GHz,壓控振盪器具有330 MHz振盪頻率調整範圍和 -24.7 dBm的輸出功率強度,在與振盪頻率距100 kHz頻偏的量測結果約為 -89.1 dBc/Hz相位雜訊。內建式濾波可切換雙頻混頻器,其模擬結果輸出電壓擺幅為0.1 V及旁波帶抑制比達到良好的30 dBc,晶片面積包含接觸墊只有0.68×0.78 mm2且功率消耗為17.6 mW。寬頻主動90°相位差電路設計,操作頻率為2到6 GHz。量測結果漂移成為1到3 GHz,在相同頻率下,兩輸出端的相位差不平衡小於10°,兩輸出端的振幅不平衡小於 ± 2.5 dB。
Due to the convenience of wireless communication, the wireless applications are popular and go deep into our life. As more and more applications trend to wireless, the data rate of the systems nowadays become not allowable. Thus, new high-data-rate standards are required. One of the conspicuous, high-data-rate standard is the Ultra-Wideband (UWB) with a total bandwidth of 7.5 GHz from 3.1 GHz to 10.6 GHz. The Band Hopping Multi-Band Orthogonal Frequency Division Multiplexing (BH-MB-OFDM) technique is used for multiple accesses purpose.
The main researches in this thesis are the voltage-controlled-oscillator and mixer of LO generator for UWB multi-band group-A transmitter and the broad-band active 90° phase-difference circuit for single-sideband mixer. The circuits in this thesis are implemented in tsmc 0.18μm CMOS process.
The measured center frequency of VCO is 3.83 GHz with tuning range 330 MHz and the output power is -24.7 dBm. The phase noise is -89.1 dBc @ 100 kHz offset. The simulated results of the mixer show 0.1 V output voltage swing and good 30 dBc side-band compression. The chip area of mixer is 0.68×0.78 mm2. The power consumption of this circuit inclued buffer stage is 17.6 mW. The measured result of phase shifter shows the operation frequency range from 1 to 3 GHz, and the phase unbalance between the output terminals across the bandwidth is less than 10° error, and the ± 2.5 dB of amplitude unbalance is achieved.
[1] G. Roberto Aiello and Gerald D. Rogerson, “Ultra-Wideband Wireless Systems”, IEEE Microwave Magazine, vol.4, Issue 2, pp.36-47, June 2003
[2] R. Harjani, J. Harvey and R. Sainati, “Analog/RF physical layer issues for UWB systems”, VLSI Design, Proceedings. 17th International Conference, pp.941-948, 2004
[3] “uwb forum”, http://www.uwbforum.org
[4] C. Sandner and A. Wiesbauer, “A 3GHz to 7GHz fast-hopping frequency synthesizer for UWB”, Ultra Wideband Systems, Joint with Conference on Ultra-Wideband Systems and Technologies. Joint UWBST & IWUWBS. International Workshop, pp.405-409, May 2004
[5] D. Porcino, W. Hirt, “Ultra-Wideband Radio Technology: Potential and Challenges Ahead”, Communications Magazine, IEEE, Vol.41, Issue 7, pp.66-74, July 2003
[6] M. P. Wylie-Green, P. A. Ranta, J. Salokannel, “Multi-band OFDM UWB solution for IEEE 802.15.3a WPANs”, Advances in Wired and Wireless Communication, 2005 IEEE/Sarnoff Symposium, pp.102-105, April 18-19, 2005
[7] E. Saberinia, A. H. Tewfik, Kai-Chuan Chang, G. E. Sobelman, “Analog to digital converter resolution of multi-band OFDM and pulsed-OFDM ultra wideband systems”, Control, Communications and Signal Processing, 2004. First International Symposium, pp.787-790, 2004
[8] W. K. Lee, W. Kim; D.Meacham, H. S. Kim, Y. S. Kim, “Implementation of a multi-tone signal generator for ultra wideband transceiver”, Ultra Wideband Systems, Joint with Conference on Ultrawideband Systems and Technologies. Joint UWBST & IWUWBS. International Workshop, pp.263-267, May 2004
[9] E. Saberinia, A. H. Tewfik, “Pulsed and non-pulsed OFDM ultra wideband wireless personal area networks”, Ultra Wideband Systems and Technologies, 2003 IEEE Conference, pp.275-279, Nov. 2003
[10] C. Corral, S. Emami, G. Rasor, “In-band interference of multi-band OFDM systems”, Spread Spectrum Techniques and Applications, 2004 IEEE Eighth International Symposium, pp.793-796, Sept. 2004
[11] A. Batra, J. Balakrishnan, A. Dabak, “Multi-band OFDM: a new approach for UWB”, Circuits and Systems, 2004. ISCAS ''04. Proceedings of the 2004 International Symposium, Vol.5, pp.365-368, May 2004
[12] G. Racherla, J. L. Ellis, D. S. Furuno, S. C. Lin, “Ultra-Wideband systems for data communications”, Personal Wireless Communications, 2002 IEEE International Conference, pp.129-133, Dec. 2002
[13] Anuj Batra et al., “Multi-band OFDM Physical Layer Proposal”, merged proposal for IEEE 802.15.3a, http://ieee802.org/15/pub/Download.html, July 2003
[14] A. Jerng, C. G. Sodini, “The impact of device type and sizing on phase noise mechanisms”, Solid-State Circuits, IEEE Journal of Vol.40, Issue 2, pp.360-369, Feb. 2005
[15] B. Wang, J. R. Hellums, C. G. Sodini, “MOSFET thermal noise modeling for analog integrated circuits”, Solid-State Circuits, IEEE Journal of Vol.29, Issue 7, pp.833–835, July 1994
[16] A. D. Berny, A. M. Niknejad, R. G. Meyer, “A wideband low-phase-noise CMOS VCO”, Custom Integrated Circuits Conference, 2003. Proceedings of the IEEE, pp. 555-558, Sept. 2003
[17] J. W. M. Rogers, J. A. Macedo, C. Plett, “The effect of varactor nonlinearity on the phase noise of completely integrated VCOs”, Solid-State Circuits, IEEE Journal of Vol.35, Issue 9, pp. 1360-1367, Sept. 2000
[18] Yuan-Kai Chu, Huey-Ru Chuang, “A fully integrated 5.8 GHz U-NII band 0.18-μm CMOS VCO”, Microwave and Wireless Components Letters, IEEE, Vol.13, Issue 7, pp.287-289, July 2003
[19] A. Kral, F. Behbahani, A. A. Abidi, “RF-CMOS oscillators with switched tuning”, Custom Integrated Circuits Conference, 1998, Proceedings of the IEEE, pp.555-558, May 1998
[20] Y. O. Yam, K. H. Wong, “Innovative demodulation method for SSB technique”, Circuits, Devices and Systems, IEE Proceedings, Vol.146, Issue 3, pp.148-152 June 1999
[21] Ting-Ping Liu, “A 2.7-V Dual-Frequency Single-Sideband Mixer”, VLSI Circuits, 1998. Digest of Technical Papers, pp.124-127, June 1998
[22] A. H. Baree, I. D. Robertson, J. S. Bharj, “MMIC SSB frequency translators with image-rejection for satellite transponder applications”, Microwave and Millimeter-Wave Monolithic Circuits Symposium, 1995. Digest of Papers., IEEE, pp.221-224, May 1995
[23] B. Razavi, “RF Microelectronics”, Prentice Hall, 1997
[24] T. H. Lee, “The Design of CMOS Radio-Frequency Integrated Circuits”, Cambridge University Press, 1998
[25] B. Razavi, “Design of Analog CMOS Integrated Circuits”, McGraw-Hill International Editoon, 2001
[26] R. Gilmore, L. Besser, “Practical RF Circuit Design for Modern Wireless Syatems Volume ΙΙ Active Circuits and Systems”, Artech House
[27] S. Hamedi-Hagh, C. A. T. Salama, “A novel C-band CMOS phase shifter for communication systems”, Circuits and Systems, 2003. ISCAS ''03. Proceedings of the 2003 International Symposium on Vol.2, pp.316-319, May 2003
[28] M. Mahfoudi, J. I. Alonso, “A simple technique for the design of MMIC 90° phase-difference networks”, Microwave Theory and Techniques, IEEE Transactions on Vol.44, Issue 10, Part 1, pp.1694-1702, Oct. 1996
[29] A. Boveda, J. I. Alonso, “A 0.7-3 GHz GaAs QPSK/QAM direct modulator”, Solid-State Circuits, IEEE Journal of, Vol.28, Issue 12, pp.1340-1349, Dec. 1993