| 研究生: |
楊家正 Chia-Cheng Yang |
|---|---|
| 論文名稱: |
釩鈦觸媒催化分解氣相戴奧辛之研究 Catalytic decomposition of gaseous dioxins over V2O5/TiO2-based catalysts |
| 指導教授: |
張木彬
Moo-Been Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 蜂巢式釩鈦觸媒 、實驗室規模 、動力模式 、戴奧辛 |
| 外文關鍵詞: | activation energy, kinetic, PCDD/Fs, V2O5-WO3/TiO2-based catalysts |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在一般燃燒系統中皆可發現戴奧辛之存在,而戴奧辛排放的控制技術以活性碳噴入及觸媒催化分解兩種類型為主流,前者主要是將戴奧辛做相的轉移,使用後之活性碳若未加以妥善處理,恐有二次污染之虞;後者則能將戴奧辛破壞分解成無毒的CO2、H2O及HCl以達到毒性減量的目的。因此本研究嘗試以蜂巢式釩鈦觸媒,在實驗室中模擬真實煙道氣中戴奧辛物種,探討此類觸媒控制戴奧辛之最佳操作參數、控制因子及破壞機制。以萃取MWI+SP飛灰中的戴奧辛作為本研究之進流戴奧辛,後端設備還包括觸媒反應系統以及樣品收集系統。
研究結果顯示,在固定空間流速5000hr-1及戴奧辛入口濃度4.1 ng-TEQ/Nm3之條件下,蜂巢式釩鈦觸媒對戴奧辛的轉化率隨著觸媒床操作溫度的升高而提高,在280℃時轉化率可達77%;而在220℃時,轉化率只有57%。在空間流速10000hr-1時,轉化率在280℃至220℃之間差了10%,而在空間流速為5000hr-1時,轉化率高低之間差了20%,顯示在高空間流速的操作條件下,轉化率受到溫度的影響較小。在固定溫度及戴奧辛濃度,調整空間流速的實驗結果顯示,在空間流速較高的條件下,所得到的戴奧辛轉化率較低,原因是高空間流速造成低反應時間,使得轉化率跟著降低。在戴奧辛17種同源異構物方面,轉化效率隨著氯數的增加而降低,此一現象在空間流速14000hr-1時最為明顯,這可能與戴奧辛的基本物性及在觸媒上的反應時間有關。本研究嘗試加入不同含量之水氣觀察其對戴奧辛轉化率的影響,結果顯示就質量濃度來說,水氣對觸媒轉化戴奧辛不全然是負面的影響,甚至有較佳的水氣含量比例;就毒性當量濃度而言,水氣存在會使戴奧辛毒性當量濃度的轉化率下降。
此外,本研究利用積分型反應器結合Mars-Van Krevelen model 求取蜂巢式釩鈦觸媒應用於OCDD及OCDF的活化能(Ea)和碰撞因子(A),經由實驗數據計算結果顯示,此類觸媒應用在處理OCDD的活化能為24.8 kJ/mole和碰撞因子為486 1/sec;OCDF的活化能為25.2 kJ/mole和碰撞因子為1978 1/sec。
Due to the extremely high toxicity, removal of dioxin from gas streams has been one of the most popular research topics in recent years. The most commonly used removal technologies include adsorption by activated carbon and catalytic decomposition. The latter is better because it can decompose dioxin, rather than phase transfer. The catalytic decomposition of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofruans (PCDFs) was investigated over commercial V2O5-WO3/TiO2-based catalysts at controlled temperature, water vapor content and space velocity in this study.
According to experimental results, at space velocity of 5000 hr-1 and dioxin concentration of 4.1 ng-TEQ/Nm3, the conversion of PCDD/Fs over V-T catalysts increases as operating temperature is increased. The catalytic conversions of PCDD/Fs increased from 57% to 77%, as the temperature is inceased from 220℃ to 280℃. At space velocity of 10000 hr-1, the difference of conversion is only 10% from 220℃ to 280℃. The experimental results indicate that higher space velocity results in lower conversions of PCDD/Fs, and in this situation it has smaller effect with operating temperature. At fixed temperature and PCDD/Fs concentration, catalytic decomposition of dioxins increases with decreasing space velocity due to longer retention time. Of the seventeen 2,3,7,8-substituted PCDD/Fs congeners, the conversion of dioxin increases with decreasing chlorination degree because higher chlornation congeners have higher boiling point and stable structure.
Finally, this study combined integral reaction and Mars-Van Krevelen model to calculate the activation energies of OCDD and OCDF, respectively. The activation energies of OCDD and OCDF are calculated as 24.8 KJ/mole and 25.2 KJ/mole, respectively.
Alemany, L. J., F. Berti, G. Busca, G. Ramis, D. Robba, G. P. Toledo and M. Trombetta, “Characterization and composition of commercial V2O5-WO3-TiO2 SCR catalysts”, Appl. Catal. B, Vol. 10, pp. 299-311, 1996.
Ballschmiter, K., W. Zoller, C. Scholtz and A. Nottrodt, “Destruction of PCDD and PCDF in bleached pulp by chlorine dioxide treatment”, Chemosphere, Vol. 12, pp. 585-597, 1983.
Becker, L. and H. Forster, “Oxidative decomposition of chlorobenzene catalyzed by palladium-containing zeolite Y”, J. catal., Vol. 170, pp. 200-208, 1997.
Chang, C. and H. Weng, “Deep oxidation of toluene on Perovskite catalysts”, Ind. Eng. Chem. Res., Vol. 32, pp. 2930-2933, 1993.
Cho, C. H. and S. K. Ihm, “Development of new vanadium-based oxide catalysts for decomposition of chlorinated aromatic pollutants”, Environ. Sci. Technol., Vol. 36, pp. 1600-1606, 2002.
Everaert, K. and J. Baeyens, “Catalytic combustion of volatile organic compounds”, J. Hazardous Mater. B109, pp. 113-139, 2004.
Furrer, J., H. Deuber, H. Hunsinger, S. Kreisz, A. Linek, H. Seifert, J. Stöhr, R. Ishikawa and K. Watanabe, “Balance of NH3 and behavior of polychlorinated dioxins and furans in the course of the selective non-catalytic reduction of nitric oxide at the TAMARA waste incineration plant”, Waste Management, Vol. 18, pp. 417-422, 1998.
Guliants, V. V., “Structure-reactivity relationships in oxidation of C4 hydrocarbons on supported vanadia catalysts”, Catal. Today, Vol. 51, pp. 255-268, 1999.
Hiraoka, M., N. Takeda, T. Kasakura, Y. Imoto, T. Tsuboi, and T. Iwasaki, “Catalytic destruction of PCDDs/PCDFs in municipal solid waste flue gas”, Chemosphere, Vol. 23, pp. 1445-1452, 1991.
Huang, H. and A. Buekens, “On the mechanisms of dioxin formation in combustion processes”, Chemosphere, Vol. 31, pp. 4099-4117, 1995.
Ide, Y., K. Kashiwabara, S. Mori, T. Okada and M. Hara, “Catalytic decomposition of dioxin from MSW incinerator flue gas”, Chemosphere, Vol. 32, pp. 189-198, 1996.
Jones, J. and J. R. H. Ross, “The development of supported vanadia catalystsfor the combined catalytic removal of the oxides of nitrogen and ofchlorinated hydrocarbons from flue gases”, Catal. Today, Vol. 35, pp. 97-105, 1997.
Krishnamoorthy, S., J. P. Baker and M. D. Amiridis, “Catalytic oxidation of 1,2-dichlororbenzene over V2O5/TiO2-based catalysts”, Catal. Today, Vol. 40, pp. 39-46, 1998.
Krishnamoorthy, S. and M. D. Amiridis, “Kinetic and in situ FTIR studies of the catalytic oxidation of 1,2-dichlorobenzene over V2O5/Al2O3 catalysts”, Catal. Today, Vol. 51, pp. 203-214, 1999.
Krishnamoorthy, S., J. A. Rivas, and M. D. Amiridis, “Catalytic oxidation of 1,2-dichlorobenzene over supported transition metal oxides”, J. Catal., Vol. 193, pp. 264-272, 2000.
Lichtenberger, J., M. D. Amiridis, “Deactivation of V2O5/TiO2 catalysts during the oxidation of meta-dichlorobenzene in the presence of methyl-naphthalene”, Catal. Today, Vol. 98, pp. 447-453, 2004.
Larrubia, M. A. and G. Busca, “An FT-IR study of the conversion of 2-chloropropane, o-dichlorobenzene and dibenzofuran on V2O5-MoO3-TiO2 SCR-DeNOx catalysts”, App. Catal. B, Vol. 39, pp. 343-352, 2002.
Liu, Y., Z. Wei, Z.Feng, M. Luo, P. Ying and C. Li, “Oxidative destruction of chlorobenzene and o-dichlorobenzene on a highly active catalyst: MnOx/TiO2-Al2O3”, J. Catal., Vol. 202, pp. 200-204, 2001.
Liljelind, P., J. Unsworth, O. Maaskant and S. Marklund, “Removal of dioxins and related aromatic hydrocarbons from flue gas streams by adsorption and catalytic destruction”, Chemosphere, Vol. 42, pp. 615-623, 2001.
Lomnicki, S., J. Lichtenberger, Z. Xu, M. Waters, J. Kosman and M.D. Amiridis, “Catalytic oxidation of 2,4,6-trichlorophenol over vanadia/titania-based catalysts”, Appl. Catal. B, Vol. 46, pp. 105-119, 2003.
McKay, G., “Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: review”, Chem. Eng. J., Vol. 86, pp. 343-368, 2002.
Okumura, M., T. Akita, M. Haruta, X. Wang, O. Kajikawa and O. Okada, “Multi-component noble metal catalysts prepared by sequential deposition precipitation for low temperature decomposition of dioxin”, Appl. Catal. B, Vol. 41, pp. 43-52, 2003.
Poplawski, K., J. Lichtenberger, F. J. Keil, K. Schnitzlein and M. D. Amiridis, “Catalytic oxidation of 1,2-dichlorobenzene over ABO3-type perovskites”, Catal. Today, Vol. 62, pp. 329-337, 2000.
Shaub, W. M. and W. Tsang, “Dioxin formation in incinerators”, Environ. Sci. Technol., Vol. 17, pp. 721-730, 1983.
Taralunga, M., J. Mijoin and P. Magnoux, “Catalytic oxidation of chlorobenzene, a model compound for dioxin, over Pt/zeolite catalysts”, Organohalogen Compd., Vol. 66, pp. 1160-1166, 2004.
Tagashira K., I. Torii, K. Myouyou, K. Takeda, T. Mizuko and Y. Tokushita, “Combustion characteristics and dioxin behavior of waste fired CFB”, Chem. Eng. Sci., Vol. 54, pp. 5599-5607, 1999.
Van den Brink, R. W., M. Krzan, M. M. R. Feijen-Jeurissen, R. Louw and P. Mulder, “The role of the support and dispersion in the catalytic combustion of chlorobenzene on noble metal based catalysts”, Appl. Catal. B, Vol. 24, pp. 255-264, 2000.
Wachs, I. E. and B. M. Weckhuysen, “Structure and reactivity of surface vanadium oxide species in oxide supports”, Appl. Catal. A, Vol. 157, pp. 67-90, 1997.
Weber, R., T. Sakurai. and H. Hagenmaier, “Low temperature decomposition of PCDD/PCDF, chlorobenzenes and PAHs by TiO2-based V2O5-WO3 catalysts”, Appl. Catal. B, Vol. 20, pp. 249-256, 1999.
Weber, R. and T. Sakurai, “Low temperature decomposition of PCB by TiO2-based V2O5-WO3 catalyst: evaluation of the relevance of PCDF formation and insights into the first step of oxidative destruction of chlorinated aromatics”, Appl. Catal. B, Vol. 34, pp. 113-127, 2001.
Weber, R., K. Nagai, J. Nishino, H. Shiraishi, M. Ishida, T. Takasuga, K. Konndo and M. Hiraoka, “Effects of selected metal oxides on the dechlorination and destruction of PCDD and PCDF”, Chemosphere, Vol. 46, pp. 1247-1253, 2002.
Yim S. D., D. J. Koh and I. S. Nam, “A pilot plant study for catalytic decomposition of PCDDs/PCDFs over supported chromium oxide catalysts”, Catal. Today, Vol. 75, pp. 269-276, 2002.
Yuji U. and M. Tatsuo, “Dechlorination of dioxins with supported palladium catalysts in 2-propanol solution”, Appl. Catal. A, Vol. 271, pp. 165-170, 2004.
翁澤民,“觸媒焚化處理氣相甲苯之研究”,國立中山大學環工所碩士論文,2004。
梁煜申,“ 鈀觸媒處理焚化廢氣中CO、NO之動力研究”,國立中興大學環工所碩士論文,2003。
楊文毅,“鈀觸媒氧化焚化廢氣中有機物之研究”,國立中興大學環工所碩士論文,2000。
吳榮宗,“工業觸媒概論”,國興出版社,1989。
楊昇府,“以Cu/Ce觸媒應用於氣相氨氧化物及其反應動力之研究”,國立中山大學環工所碩士論文,2002。
徐禮業,“利用銅在碳及其他載體上為觸媒以NH3還原NO反應之研究”,國立成功大學化工所博士論文,2003。
謝瑜芬,“以SCR觸媒破壞氣相中戴奧辛之初步探討”,國立中央大學環工所碩士論文,2003。
鄭銚強,“焚化系統中抑制戴奧辛生成之初步研究”,國立中央大學環工所碩士論文,2003。
陳順文,“聚酯纖維製程中VOC焚化處理用觸媒之特性探討”,元智大學環工所碩士論文,2003。
李秉傑、邱宏明、王奕凱合譯,「非均勻系催化原理與應用」,渤海堂文化公司印行,1988。
梁煜申,“鈀觸媒處理焚化廢氣中CO、NO 之動力研究”,國立中興大學環工所碩士論文,2003。
呂立德,「化工動力與化工熱力」,立功出版社, 1991。
環境保護統計月報,第208期,2006。
環保署,“九十一、九十二、九十三年度建立台灣地區戴奧辛排放清冊及排放資料庫三年工作計畫報告書”,2004。