| 研究生: |
龔大勝 Da-Sheng Kung |
|---|---|
| 論文名稱: |
SL(4,R)理論下的漸近平直對稱轉換 Asymptotic Flatness Preserving Transformations in SL(4,R) sigma-model |
| 指導教授: |
陳江梅
Chiang-Mei Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 漸近平直 、SL(4 、R)模型 、五維黑洞 |
| 外文關鍵詞: | asymptotic flat, SL(4, R) sigma-model, five dimensional black hole, black ring |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
考慮一個具有SL(4,R)對稱性的五維理論,其中包含重力場、一個純量場及一個三階向量場,我們提出保持時空漸近平直的對稱轉換所必須滿足的條件,統整出在不同座標描述的平直時空中,滿足該條件的所有轉換。這篇論文主要針對以下三種不同時空結構做討論:Kaluza-Klein黑洞、五維的黑洞和black ring,我們詳細列出所有滿足漸近平直條件的對稱轉換,並且討論這些轉換所代表的物理意義,其中部分轉換可以給出帶有電荷的解。
We give a systematic method to determine the asymptotic flatness preserving transformations
in the three-dimensional SL(4,R)/SO(2, 2) sigma-model arising from a
five-dimensional gravity coupled to a dilaton and a three-form field. The permitted
transformations depend on the coordinate choices. By focusing on three cases,
namely the Kaluza-Klein black hole, five-dimensional black hole and black ring, we
find out all possible asymptotic flatness preserving transformations and apply them
to generate charge from single rotating vacuum solutions.
Bibliography
[1] A. Bouchareb, C. M. Chen, G. Clement, D. V. Gal’tsov, N. G. Scherbluck and
T. Wolf, “ G2 generating technique for minimal D=5 supergravity and black
rings, ” hep-th/0708.2361v2.
[2] C. M. Chen, D. V. Gal’tsov and S. A. Sharakin, “ Inverse dualization and nonlocal
dualities between Einstein gravity and supergravities, ” Class. Quantum
Grav. 19 (2002), 347-373.
[3] C. M. Chen, D. V. Gal’tsov, K. Maeda and S. A. Sharakin, “ SL(4,R) generating
symmetry in five−dimensional gravity coupled to dilaton and three−form,
” Phys. Lett. B453, 7 (1999), hep-th/9901130.
[4] H. Elvang, “ A charged rotating black ring, ” Phys. Rev. D 68, 124016 (2003).
[5] R. Emparan and H. S. Reall, “ A rotating black ring in five dimensions, ”
Phys. Rev. Lett. 88, 101101 (2002), hep-th/0110260.
[6] R. Emparan and H. S. Reall, “ Black rings, ” Class. Quant. Grav. 23, R169
(2006), hep-th/0608012.
[7] R. Emparan, “ Rotating circular strings and infinite non − uniqueness of
black rings, ” JHEP 03 (2004) 064.
[8] V. Frolov, A. Zelnikov and U. Bleyer, “ Charged rotating black holes from
five-dimensional point of view, ” Ann. der Physik (Leipzig) 44 (1987), 371-
377.
[9] S. Giusto and A. Saxena, “ Stationary axisymmetric solutions of five
dimensional gravity, ”hep-th/0705.4484v2.
[10] J. H. Horne and G. T. Horowitz, “ Rotating dilaton black holes, ” Phys. Rev.
D46 (1992), 1340-1346, hep-th/9203083.
[11] W. Israel, Phys. Rev. 164 (1967) 1776. B. Carter, Phys. Rev. Lett. 26 (1971)
331. D. C. Robinson, Phys. Rev. Lett. 34 (1975) 905.
[12] R. C. Myers and M. J. Perry, “ Black holes in higher dimensional space−times,
” Ann. Phys. 172 (1986) 304.
[13] A. A. Pomeransky and R. A. Sen’kov, “ Black ring with two angular momenta,
” hep-th/0612005.