| 研究生: |
吳順吉 Shun-Ji Wu |
|---|---|
| 論文名稱: |
熱電材料(Ge0.86Sb0.08Bi0.06)Te的聲子交互作用 Extended Brillouin zones from phonon cross-talks in thermoelectric (Ge0.86Sb0.08Bi0.06)Te |
| 指導教授: |
李文献
Wen-Hsien Li |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 熱電材料 、聲子 、中子彈性散射 、中子非彈性散射 |
| 外文關鍵詞: | Thermoelectric materials, Phonon, Neutron elastic scattering, Neutron inelastic scattering |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
熱電材料GeTe屬於P型半導體,是一種會因溫度改變而發生結構相變的材料,其在中溫區(300~600 K)至高溫區(> 600 K)的範圍中具有不錯的zT值,若摻雜Sb及Bi會使zT值(優質係數)變大,同時在(Ge0.86Sb0.08Bi0.06)Te這種Sb/Bi摻雜比例下,其在高溫區的zT值會大於2,是一個具有潛力的熱電材料之一。
在本研究中,將著重於探討(Ge0.86Sb0.08Bi0.06)Te此材料內的聲子動力行為,這是利用澳洲ANSTO的冷中子三軸散射儀(SIKA)進行的實驗研究。首先,會先利用SIKA進行此材料的中子彈性散射實驗,以判斷結構相的轉變溫度。之後,進行此材料於200 K、400 K、500 K、680 K及800 K的中子非彈性散射實驗,並繪製各溫度下的中子色散圖(即波向量-頻率關係圖或波向量-能量關係圖),以看此材料在各溫度內的聲子動力行為。
針對聲子動力行為的分析,是透過初始能量(Initial energy, E0)、能隙(Energy gap, Eg)、聲子諧振能量(Phonon harmonic energy, Eh0)、非諧振聲子-聲子散射能量(Anharmonic phonon-phonon scattering energy, Ep-p)、電子-聲子散射能量(Electron-phonon scattering energy, Ee-p)四個參數進行擬合分析,並藉由這四個參數與溫度的關係來獲得熱效應所引發聲子動力行為轉變的資訊。
The thermoelectric material GeTe is a P-type semiconductor that undergoes a structural phase transition when the temperature changes. It exhibits good zT values (a measure of thermoelectric quality) in the mid-temperature range (300~600 K) to high-temperature range (> 600 K). Doping with Sb and Bi enhances the zT value; for instance, in the (Ge0.86Sb0.08Bi0.06)Te material, the zT value exceeds 2 in the high-temperature range, making it a promising thermoelectric material.
In this study, we focus on the phonon dynamics within the (Ge0.86Sb0.08Bi0.06)Te material, utilizing the cold neutron triple-axis spectrometer (SIKA) at Australia's ANSTO for experimental research. Initially, neutron elastic scattering experiments are conducted using SIKA to determine the phase transition temperatures of the material. Subsequently, neutron inelastic scattering experiments are performed at temperatures of 200 K, 400 K, 500 K, 680 K, and 800 K. Neutron dispersion diagrams (i.e., wave vector-frequency or wave vector-energy relationships) are plotted to observe the phonon dynamics at these temperatures.
The analysis of phonon dynamics involves fitting four parameters: background energy (E0), energy gap (E¬g), phonon harmonic energy (Eh0), anharmonic phonon-phonon scattering energy (Ep-p), and electron-phonon scattering energy (Ee-p). The relationship between these parameters and temperature provides insights into the phonon dynamic changes induced by thermal effects.
[1] Department of Economic and Social Affairs(UN). Sustainable Development Goals. 2015 [cited 2024 May 9]; Available from: https://sdgs.un.org/zh/goals.
[2] Seebeck, T.J., Ueber die magnetische Polarisation der Metalle und Erze durch Temperaturdifferenz. Annalen der Physik, 1826. 82(3): p. 253-286.
[3] Peltier, J.C.A., Nouvelles expériences sur la caloricité des courans électriques. 1834.
[4] Thomson, W., 4. On a Mechanical Theory of Thermo-Electric Currents. Proceedings of the Royal Society of Edinburgh, 1857. 3: p. 91-98.
[5] Apertet, Y. and C. Goupil, On the fundamental aspect of the first Kelvin's relation in thermoelectricity. International Journal of Thermal Sciences, 2016. 104: p. 225-227.
[6] Rowe, D.M., Thermoelectrics handbook : macro to nano. 2006, Boca Raton: CRC/Taylor & Francis.
[7] Wood, C., Materials for thermoelectric energy conversion. Reports on progress in physics, 1988. 51(4): p. 459.
[8] Vaqueiro, P. and A.V. Powell, Recent developments in nanostructured materials for high-performance thermoelectrics. Journal of Materials Chemistry, 2010. 20(43): p. 9577-9584.
[9] Bell, L.E., Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008. 321(5895): p. 1457-1461.
[10] Snyder, G.J. and A.H. Snyder, Figure of merit ZT of a thermoelectric device defined from materials properties. Energy & Environmental Science, 2017. 10(11): p. 2280-2283.
[11] Shi, X.-L., J. Zou, and Z.-G. Chen, Advanced Thermoelectric Design: From Materials and Structures to Devices. Chemical Reviews, 2020. 120(15): p. 7399-7515.
[12] Guan, Q.-L., L.-Q. Dong, and Q. Hao, Improved Thermoelectric Performance of Sb2Te3 Nanosheets by Coating Pt Particles in Wide Medium-Temperature Zone. Materials, 2023. 16(21): p. 6961.
[13] Rull-Bravo, M., et al., Skutterudites as thermoelectric materials: revisited. Rsc Advances, 2015. 5(52): p. 41653-41667.
[14] Li, J., et al., Low-Symmetry Rhombohedral GeTe Thermoelectrics. Joule, 2018. 2(5): p. 976-987.
[15] Ranganayakulu, V.K., et al., Ultrahigh zT from strong electron–phonon interactions and a low-dimensional Fermi surface. Energy & Environmental Science, 2024. 17(5): p. 1904-1915.
[16] Biswas, K., et al., High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012. 489(7416): p. 414-418.
[17] Liu, W.-D., et al., High-Performance GeTe-Based Thermoelectrics: from Materials to Devices. Advanced Energy Materials, 2020. 10(19): p. 2000367.
[18] Lewis, J.E., Band Structure and Nature of Lattice Defects in GeTe from Analysis of Electrical Properties. physica status solidi (b), 1969. 35(2): p. 737-745.
[19] Lewis, J.E., The Defect Structure of Non-Stoichiometric Germanium Telluride from Magnetic Susceptibility Measurements. physica status solidi (b), 1970. 38(1): p. 131-140.
[20] Li, J., et al., Realizing the High Thermoelectric Performance of GeTe by Sb-Doping and Se-Alloying. Chemistry of Materials, 2017. 29(2): p. 605-611.
[21] Perumal, S., et al., Low Thermal Conductivity and High Thermoelectric Performance in Sb and Bi Codoped GeTe: Complementary Effect of Band Convergence and Nanostructuring. Chemistry of Materials, 2017. 29(24): p. 10426-10435.
[22] Yadav, A., et al., An analytic study of the Wiedemann–Franz law and the thermoelectric figure of merit. Journal of Physics Communications, 2019. 3(10): p. 105001.
[23] Kittel, C., Kittel's Introduction to Solid State Physics. 2018: Wiley.
[24] Tritt, T.M., Thermoelectric Phenomena, Materials, and Applications. Annual Review of Materials Research, 2011. 41(Volume 41, 2011): p. 433-448.
[25] Gibbs, Z.M., et al., Effective mass and Fermi surface complexity factor from ab initio band structure calculations. npj Computational Materials, 2017. 3(1): p. 8.
[26] Suwardi, A., et al., Inertial effective mass as an effective descriptor for thermoelectrics via data-driven evaluation. Journal of Materials Chemistry A, 2019. 7(41): p. 23762-23769.
[27] CRONIN, B., THE THERMOELECTRIC LIMIT ZT~ 1: FACT OR ARTIFACT. 1992.
[28] Rowe, D.M., CRC Handbook of Thermoelectrics. 1995: CRC Press. P. 407-440.
[29] Chadwick, J., The existence of a neutron. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1932. 136(830): p. 692-708.
[30] Shull, C.G. and E.O. Wollan, X-Ray, Electron, and Neutron Diffraction. Science, 1948. 108(2795): p. 69-75.
[31] Oura, K., et al., Surface Science: An Introduction. 2003: Springer Berlin Heidelberg. P. 47-48.
[32] 吳浚銘 and 張烈錚, 台灣首座冷中子三軸散射儀-SIKA. 科儀新知, 2015(204): p. 92-99.
[33] 矢野, 真., et al., Taiwanの冷中性子三軸分光器SIKA. 波紋, 2016. 26(4): p. 174-177.
[34] Hsu, K.F., et al., Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit. Science, 2004. 303(5659): p. 818-821.
[35] 郭于嘉, 熱電材料Ge0.86Sb0.08Bi0.06Te在高溫Fm3 ̅m相的聲子色散關係, 國立中央大學: 桃園市, 碩士論文, 民國111年. p. 101.
[36] Ma, M.-H., et al., Extremely space- and time-limited phonon propagation from electron-lattice scattering induced by Sb/Bi codoping in Ge0.86Sb0.08Bi0.06Te single crystal. Physical Review Materials, 2021. 5(11): p. 114602.