| 研究生: |
邱中威 Chung-Wei Chiu |
|---|---|
| 論文名稱: |
分集結合技術在相關性中上衰落通道上之二階統計特性 Second-Order Statistics of Diversity Combining Receptions over Correlated Nakagami-m FadingChannels |
| 指導教授: |
林嘉慶
Jia-Chin Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 平均衰落期間 、水平跨越比例 |
| 外文關鍵詞: | average fade duration, level crossing rate |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文中,為了兼顧實用與理論,在實驗室中產生了相關性複數中上衰落通道並且分析相關性通道上分集結合之二階統計特性-水平跨越比例和平均衰落區間。在最大-比率結合的推導中 [20],利用了匹配濾波器的概念並且假設接收到的信號彼此間是獨立的。而在先前的研究中[45], [46], [49],他們也是直接利用傳統的最大-比率結合定義-封包平方和。但當接收到的信號間有相關性時,最大-比率結合的傳統定義是錯誤的並且失去了最大訊雜比的優勢。在相關性通道中,最大-比率結合是依照KL 展開式推導獲得 [28],所以在做最大比率結合前,需要消除信號間的相關性,才能使訊號擁有最大訊雜比。
In practice and in theory, correlated complex Nakagami-m fading channels are generated in a laboratory environment, level crossing rate and average fade duration of diversity
combining over correlated Nakagami-m fading channels are analyzed in this paper. In the derivation of maximal-ratio combining [20], it uses the concept about matched filter and assumes that received signals are independent. The maximal-ratio combining method that was conventionally employed in the previous studied [45], [46], [49] directly sums envelope squares across all branches. If the fading channels are correlated, this method is definitely incorrectly performed and undoubtedly loses its predominance. By definition, when the fading channels are correlated, the MRC should be derived in accordance with the KL expansion theorem for random processes [28]. As a result, a whitening process has to be conducted prior to the power accumulation process for the maximum SNR.
[1] T. S. Rappaport, Wireless Communications: Principles and Practice, 2nd ed.
Englewood Cliffs, NJ: Prentice-Hall, 1996.
[2] A. Goldsmith, Wireless Communications, Stanford University Press, 2003.
[3] J. G. Proakis and M. Salehi, Digital Communications, 5th ed. New York:
McGraw-Hill, 2008.
[4] M. Abramowitz and I. A. Stegun, Handbook of Mathenatical Functions. New
York: Dover Publications, 1972.
[5] G. Fraidenraich, J. C. S. S. Filho, and M. D. Yacoub, ―Second-order statistics of
maximal-ratio and equal-gain combining in Hoyt fading,‖ IEEE Commun. Lett.,
vol. 9, no. 1, pp. 19-21, Jan. 2005.
[6] B. Chytil, ―The distribution of amplitude scintillation and the conversion of
scintillation indices,‖ J. Atmos. Terr. Phys., vol. 29, pp. 1175-1177, Sep. 1967.
[7] C. X. Wang, N. Youseef, and M. Patzold, ―Level-crossing rate and average
duration of fades of deterministic simulation models for Nakagami-Hoyt fading
channels,‖ in Proc. WPMC’02, Honolulu, HI, Oct. 2002, pp.272-276.
[8] A. Mehrnia and H. Hashemi, ―Mobile satellite propagation channel part II—A
new model and its performance,‖ in Proc IEEE Vehicle Technology Conf. (VTC’
99), Amsterdam, The Netherlands, Sep. 1999, pp. 2780-2784.
[9] A. Annamalai, C. Tellambura, and V. K. Bhargava, ―Simple and accurate
methods for the outage analysis in cellular mobile radio systems—A unified
approach,‖ IEEE Trans. Commun., vol. 49, pp. 303-316, Feb. 2001.
[10] M. K. Simon and M. S. Alouini, ―A unified approach to the performance analysis
of digital communication over generalized fading channels,‖ in Proc. IEEE, vol.
86, Sep. 1998, pp. 1860-1877.
[11] M. Nakagami, ―The m-distribution–a general formula of intensity distribution of
rapid fading,‖ Statistical Methods in Radio Wave Propagation, W. C. Hoffman,
Ed. Elmsford, NY: Pergamon, 1960.
[12] T. Aulin, ―A modified model for the fading signal at a mobile radio channel,‖
IEEE Trans. Veh. Technol., vol. 28, no. 3, pp. 182-203, Aug. 1979.
[13] H. Suzuki, ―A statistical model for urban radio propagation,‖ IEEE Trans.
Commun., vol. 25, no. 7, pp. 673-680, Jul. 1977.
[14] T. M. Wu, ―Generation of Nakagami-m fading channels,‖ IEEE VTC, vol. 6, pp.
2787-2792, May 2006.
[15] M. K. Simon and M. S. Alouini, Digital Communication over Fading Channels,
2nd ed. New York: Wiley, 2005.
[16] M. Schwartz, W. R. Bennett, and S. Stein, Communication Systems and
Techniques. New York: McGraw-Hill, 1966.
[17] C. E. Shannon, ―A mathematical theory of communication,‖ Bell Syst. Tech. J.,
vol. 27, pp.379-423, Oct. 1948.
[18] R. J. McEliece and W. E. Stark, ―Channels with block interference,‖ IEEE Trans.
Inform. Theory, pp. 44-53, Jan. 1984.
[19] W. C. Y. Lee, ―Statistical analysis of the level crossings and duration of fades of
the signal from an energy density mobile radio antenna,‖ Bell Syst. Tech. J., vol.
46, pp. 417-448, 1967.
[20] D. G. Brennan, ―Linear diversity combining techniques,‖ in Proc. IRE, vol.47,
Jun. 1959, pp. 1075-1102.
[21] R. H. Clarke, ―A statistical theory of mobile-radio reception,‖ Bell Syst. Tech. J.,
vol. 47, pp.957-1000, Jul-Aug. 1968.
[22] W. C. Jakes, Jr., Ed., Microwave Mobile Communication. New York: Wily, 1974.
[23] K. Zhang, Z. Song, and Y. L. Guan, ―Cholesky decomposition model for
correlated MRC diversity systems in Nakagami fading channels,‖ IEEE VTC, vol.
3, pp. 1515-1519, Sep. 2002.
[24] Q. T. Zhang, ―Efficient generation of correlated Nakagami fading channels with
arbitrary fading parameter,‖ in Proc. ICC, 2002, vol. 3, pp. 1358-1362.
[25] J. C. S. S. Filho and M. D. Yacoub, ―Highly accurate ? ?? Approximation to
the sum of M independent nonidentical Hoyt variates,‖ Electron. Lett., vol. 4, no.
6, pp. 436-438, Mar. 2005.
[26] M. D. Yacoub, J. E. Bautista, and L. G. D. R. Guedes ―On higher order statistics
of the Nakagami-m distribution,‖ IEEE Trans. Veh. Technol., vol. 48, pp.
2360-2369, May 1991.
[27] P. Dent, G. E. Bottomley, and T. Croft, ―Jakes‘ fading model revisited,‖ Electron.
Lett., vol. 29, no. 13, pp. 1162-1163, Jun. 1993.
[28] H. Stark and J. W. Woods, Probability and Random Processes with Application
to Signal Processing, 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 2001.
[29] M. F. Pop and N. C. Beaulieu, ―Limitations of sum-of-sinusoids fading channel
simulators,‖ IEEE Trans. Commun., vol. 49, no. 4, pp. 699-708, Apr. 2001.
[30] R. T. Smith and R. B. Minton, Calculus, 2ed ed. New York: McGraw-Hill, 2002.
[31] S. Kotz and J. Adams, ―Distribution of sum of identically distributed
exponentially correlated gamma variables,‖ Annals Math. Stat., vol. 35, pp.
227–283, Jun. 1964.
[32] Q. T. Zhang, ―Exact analysis of postdetection combining for DPSK and NFSK
systems over arbitrarily correlated Nakagami channels,‖ IEEE Trans. Commun.,
vol. 46, no. 11, pp. 1141-1150, Nov. 1998.
[33] M. D. Yacoub, G. Fraidenraich, and J. C. S. Santos Filho, ―Nakagami-m
phase-envelope joint distribution,‖ Electron. Lett., vol. 41, no. 5, Mar.2005.
[34] N. Youssef, T. Munakata and M. Takeda, ―Fade statistics in Nakagami fading
environments,‖ in Proc. IEEE Int. Symp. Spread Spectrum Techniques and
Applications, Mainz, Germany, 1996, pp. 1244–1247.
[35] L. Yang and M. –S. Alouini, ―Average level crossing rate and average outage
duration of generalized selection combining,‖ IEEE Trans. Commun., vol. 51, no.
12, pp. 1997-2000, Dec. 2003.
[36] G. L. Siqueira and E. J. A. Vasquez, ―Local and global signal variability statistics
in a mobile urban environment,‖ Kiuwer Wireless Pers. Commun., vol. 15, no. 1,
pp. 61-78, Oct. 2000.
[37] S. O. Rice, ―Statistical properties of a sine wave plus random noise,‖ Bell System
Tech. J., vol. 27, pp. 109-157, Jan. 1948.
[38] S. O. Rice, ―Mathematical analysis of random noise,‖ Bell System Tech. J., vol.
23, pp. 282-332, Jul. 1944.
[39] R. S. Hoyt, ―Probability functions for the modulus and angle of the normal
complex variate,‖ Bell System Tech. J., vol. 26, pp. 318-359, Jan. 1947.
[40] W. C. Y. Lee, ―Level crossing rates of an equal-gain predetection diversity
combiner,‖ IEEE Trans. Commun. Technol., vol. COM-18, pp. 417-426, Aug.
1970.
[41] F. Adachi, M. T. Feeney, and J. D. Parson, ―Effects of correlated fading on level
crossing rates and average fade durations with predetection diversity reception,‖
Proc. Inst. Elect. Eng., vol. 135, pp. 11-17, Feb. 1988.
[42] W. R. Braun and U. Dersch, ―A physical mobile radio channel model,‖ IEEE
Trans. Veh. Technol., vol. 40, no. 2, pp. 472-482, May 1991.
[43] K.W. Chan, Second-Order Statistics for Diversity Combining Techniques in
Nakagami Fading Channels, National Central University, June 2009
[44] Q. T. Zhang, ―Exact analysis of postdetection combining for DPSK and NFSK
systems over arbitrarily correlated Nakagami channels,‖ IEEE Trans. Commun.,
vol. 46, no. 11, pp. 1459-1467, Nov. 1998.
[45] Q. T. Zhang, ―Maximal-ratio combining over Nakagami fading channels with an
arbitrary branch covariance matrix,‖ IEEE Trans. Veh. Technol., vol. 48, no. 4,
pp. 1141-1150, Jul. 1999.
[46] D. Li and V. K. Prabhu, ―Average level crossing rates and average fade durations
for maximal-ratio combining in correlated Nakagami channels,‖ in Proc. WCNC,
Mar. 2004, pp. 339-344.
[47] G. K. Karagiannidis, D. A. Zogas, and S. A. Kotsopoulos, ―On the multivariate
Nakagami-m distribution with exponential correlation,‖ IEEE Trans. Commun.,
vol. 51, no. 8, Aug. 2003.
[48] J. Reig, ―Multivariate Nakagami-m distribution with constant correlation
model,‖ Int. J. Electron. Commun. (AEU), vol. 63, no. 1, Jan.
[49] V. A. Aalo, ―Performance of maximal-ratio diversity systems in a correlated
Nakagami-m fading environment,‖ IEEE Trans. Commun., vol. 43, no. 8, pp.
2360-2369, Aug. 1995.
[50] O. C. Ugweje and V. A. Aalo, ―Performance of selection diversity system in
correlated Nakagami fading,‖ IEEE VTC, vol. 3, pp. 1488-1492, May 1997.
[51] M. S. Alouini, A. Abdi, and M. Kaveh, ―Sum of gamma variates and
performance of wireless communication systems over Nakagami-fading
channels,‖ IEEE Trans. Veh. Technol., vol. 50, no. 6, pp. 1471-1480, Nov. 2001.
[52] J. Reig and N. Cardona, ―Nakagami-m approximate distribution of sum of two
Nakagami-m correlated variables,‖ Electron. Lett., vol. 36, no. 11, pp. 978-980,
May 2000.
[53] J. Reig, L. Rubio and N. Cardona, ―Bivariate Nakagami-m distribution with
arbitrary fading parameters, ‖ Electron. Lett., vol. 38, no. 25, pp. 1715-1717, Dec.
2002.
[54] C. Tellambura, A. Annamalai, and V. K. Bhargava, ―Contour Integral
Representation for Generalized Marcum-Q Function and Its Application to
Unified Analysis of Dual-Branch Selection Diversity over Correlated
Nakagami-m Fading Channels,‖ IEEE VTC, vol. 2, pp. 1031-1034, May 2000.
[55] Lin Yang and Mohamed-Slim Alouini, ―An Exact Analysis of the Impact of
Fakding Correlation on the Average Level Crossing Rate and Average Outage
Duration of Selection Combining,‖ IEEE VTC, vol. 2, pp. 241-245, Apr. 2003.
[56] Chantri Polprasert and James A. Ritcey, ―A Nakagami Fading Phase Difference
Distribution and its Impact on BER Performance,‖ IEEE Trans. Wireless
Commun., vol. 7, no. 7, pp. 2805-2813, Jul. 2008.
[57] Jia-Chin Lin, ―A modified PN code tracking loop for direct-sequence
spread-spectrum communication over arbitrarily correlated multipath fading
channels,‖ IEEE Journ. Select. Area. Commun., vol. 19, no. 12, pp. 2381-2395,
Dec. 2001.
[58] Jia-Chin Lin, ―Differentially coherent PN code acquisition based on a matched
filter for chip-asynchronous DS/SS communications,‖ IEEE Trans. Vehic.
Technol., vol. 51, no. 6, pp. 1596-1599, Nov. 2002.
[59] Jia-Chin Lin, ―Differentially coherent PN code acquisition with full-period
correlation in chip-synchronous DS/SS receivers,‖ IEEE Trans. Commun., vol.
50, no. 5, pp. 698-702, May 2002.
[60] Jia-Chin Lin, ―A frequency offset estimation technique based on frequency error
characterization for OFDM communication on time-varying multipath fading
channels,‖ IEEE Trans. Vehic. Technol., vol. 56, no. 3, pp. 1209-1222, May
2007.
[61] Jia-Chin Lin, ―Coarse frequency offset acquisition via subcarrier differential
detection for OFDM communications,‖ IEEE Trans. Commun., vol. 54, no. 8, pp.
1415-1426, Aug. 2006.