| 研究生: |
葉弘毅 Hung-Yi Yeh |
|---|---|
| 論文名稱: |
結合衛星與地面觀測資料在台中地區能見度與氣膠參數變化之分析 Analysis of variation in visibility and aerosol properties over Taichung city based on satellite and ground observations |
| 指導教授: |
林唐煌
Tang-Huang Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
太空及遙測研究中心 - 遙測科技碩士學位學程 Master of Science Program in Remote Sensing Science and Technology |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 能見度 、懸浮微粒濃度 、氣膠光學厚度 、相對溼度 、氣膠種類 、土地覆蓋種類 |
| 外文關鍵詞: | Land Use/Land Cover |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台中地區近年來的發展十分迅速,在都市擴建的同時台中地貌也
隨之變化,而導致多樣的汙染問題。因此大氣中的懸浮微粒(Particulate
Matter, PM)被視為最受關注的空氣汙染物,然而大多數人還會透過觀
測大氣能見度(Visibility)做為判斷空氣汙染程度的依據。為了解台中
地區長期空氣污染之變化,除了透過地面觀測之能見度與PM2.5 濃度
外,並利用Terra 衛星搭載MODIS (Moderate Resolution Imaging
Spectroradiometer)AOD 產品,配合正規化氣膠指數 (Normalized
Gradient Aerosol Index, NGAI) 辨識氣膠種類,探討台中地區氣膠的
變化情形。此外亦藉由Landsat 衛星所觀測多波段影像進行土地覆蓋
分類,分析台中地區氣膠變化的原因與土地利用改變之關係,結果顯
示從1993 年至2016 年台中市地表覆蓋物的總面積中,植被減少16%、
人工建物增加11%,顯示台中地區地表覆蓋物的明顯變化,且2006
年開始出現的沙塵顯示氣膠種類變化。觀測結果亦證實不同大氣條件
與土地利用改變對於台中地區的能見度具有相當程度的影響,透過地
面觀測和衛星資料的結合,若能得到更佳解析度的氣膠與氣象場資料,
對於空氣污染的防治也會有所幫助。
Visibility is an indicator usually used by residents to evaluate air
quality in urban area. And most people think that the air pollution in
PM2.5 concentration getting more serious over Taichung city. Actually, the
value of visibility could be affected by not only air pollutants but also
meteorological parameters, such as aerosol type, water vapor and planetary
boundary layer height. All of the factors will be resulted in the variation of
atmospheric extinction which is the most significant to visibility. Therefore,
to identify each effect is essential to understand and prevent the worse
visibility phenomenon, which is the main objective of this study.
As the main component of air pollutants, the relationship with
visibility will be examined at first in this study. Both ground-based
measurements and satellite observations are collected for the analysis. The
measurements of visibility and PM2.5 concentration are collected from
ground station. To obtain the temporal and spatial information, the aerosol
optical depth (AOD) retrieved from MODIS (Moderate Resolution
Imaging Spectroradiometer) over study area is employed and associated
with the NGAI (Normalized Gradient Aerosol Index) approach to identify
the aerosol type in Ds (Dust), AP (Artificial Pollutants), BB (Biomass
Burning). And the land use/land cover changes are also analyzed with
Landsat imagery.
Although ground based measurements show that air pollution in
Taichung area has decreased, but satellite observations do not show that
same results. Therefore, long-term data shows high relative humidity (RH)
go with low visibility. And NGAI aerosol types appear Ds from 2006 to
2017, but AP remains the main source of aerosol. Compare land use result
from 1993 to 2016, showing huge changes in Taichung. Understanding the
reason about aerosol type and meteorological parameters change is
important.
Brimblecombe, P. (2011). The big smoke: a history of air pollution in London since medieval times. Routledge.
Charlson, R. J., S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J.
E. Hansen, and D. J. Hofmann (1992). Climate forcing by anthropogenic aerosols. Science, 255(5043), 423-430.
Covert, D. S., Charlson, R. J., & Ahlquist, N. C. (1972). A study of the
relationship of chemical composition and humidity to light scattering by aerosols. Journal of Applied Meteorology, 11(6), 968-976.
Deng, Y., Qi, D., Deng, C., Zhang, X., & Zhao, D. (2008). Superparamagnetic High-Magnetization Microspheres with an Fe3O4@SiO2 Core and Perpendicularly Aligned Mesoporous SiO2 Shell for Removal of Microcystins. Journal of the American Chemical Society, 130(1), 28-29.
Husar, R. B., Holloway, J. M., Patterson, D. E., & Wilson, W. E.(1981).
Spatial and temporal pattern of eastern US haziness: a summary. Atmospheric Environment (1967), 15(10-11), 1919-1928.
Koelmans, A. A., M. T. O. Jonker, G. Cornelissen, T. D. Bucheli, P. C. M.
van Noort, and Ö . Gustafsson (2006), Black carbon: The reverse of its
dark side, Chemosphere, 63, 365–377.
Koshmieder, H.,“Theorie Der Horizontalen Sichweite II : Kontrast Und
Sichtweite Beitrage Zur Physik Der Freien,”Atmosphere, Vol.12,
pp.171-181, 1925.
Lin, T.-H., Liu, G.-R., & Liu, C.-Y. (2016). A novel index for
atmospheric aerosol type categorization with spectral optical depths
from satellite retrieval. Int. Arch. Photogramm. Remote Sens. Spat.
Inf. Sci, 277-279.
Penner, J. E., H. Eddleman, and T. Novakov. (1993), Towards the
development of a global inventory for black carbon emissions, Atmos.
Environ., 27, 1277–1295.
Ramachandran, S., & Kedia, S. (2010). Black carbon aerosols over an
urban region: radiative forcing and climate impact. Journal of
Geophysical Research: Atmospheres, 115(D10).
Ramana, M. V., Ramanathan, V., Feng, Y., Yoon, S. C., Kim, S. W.,
Carmichael, G. R., & Schauer, J. J.(2010). Warming influenced by the ratio of black carbon to sulphate and the black-carbon source. Nature Geoscience, 3(8), 542-545.
Seinfeld, J. H., Pandis, S. N., & Noone, K. (1998). Atmospheric chemistry and physics: from air pollution to climate change: AIP.
Singh, A., Bloss, W. J., & Pope, F. D. (2015). Remember, remember the 5th of November; gunpowder, particles and smog. Weather, 70(11), 320-324.
Tie, X., Huang, R. J., Dai, W., Cao, J., Long, X., Su, X., ... & Li, G.(2016).
Effect of heavy haze and aerosol pollution on rice and wheat productions in China. Scientific reports, 6.
Tzu-Chin Tsai, Yung-Jyh Jeng, D. Allen Chu, Jen-Ping Chen, Shuenn- Chin Chang. (2011). Analysis of the relationship between MODIS aerosol optical depth and particulate matter from 2006 to 2008. Atmospheric Environment , 45, 4777-4788.
Watson, J. G. (2002). Visibility: Science and regulation. Journal of the
Air & Waste Management Association, 52(6), 628-713.
Wilkins, E. T. (1954). Air pollution and the London fog of December, 1952. Journal of the Royal Sanitary Institute, 74(1), 1-21.
Zhuang, B., Wang, T., Liu, J., Li, S., Xie, M., Han, Y., . . . Zhu, J.(2017).
The surface aerosol optical properties in the urban area of Nanjing, west Yangtze River Delta, China. Atmos. Chem. Phys., 17(2), 1143-1160.
孫達旻.(2018). 同時輻射率定法在向日葵八號氣膠光學厚度反演之應用. (碩士), 國立中央大學, 桃園市.