| 研究生: |
王喻珊 Yu-Shan Wang |
|---|---|
| 論文名稱: |
設計、合成與鑑定並二苯二環戊二烯並苯並二噻吩非富勒烯負型高分子及其在有機光伏電池之應用 Design, Synthesis and Characterization of Emeraldicene non-Fullerene n-Type Polymers and their Application for Organic Photovoltaics |
| 指導教授: |
陳錦地
Chin-Ti Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 191 |
| 中文關鍵詞: | 多環芳香烴化合物 、價荷傳輸能力 、π-π 堆疊能力 、高分子 、有機光伏電池 |
| 外文關鍵詞: | polycyclic aromatic hydrocarbon compounds, charge transport ability, π-π stacking, polymer, photovoltaics |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
EMD 是一種多環芳香烴化合物,其優點在於化學結構相穩定不易被破壞,且是一個巨大共軛體,有助於分子內的價荷傳輸能力;另外,也具有高度的平面性,因此分子間的 π-π 堆疊能力較強,利於分子間價荷的傳輸,此優勢非常適合應用在光電領域的材料上。
故本論文研究欲合成四個 EMD 系列高分子,EMDCN2TVT、EMDCN2bT、EMDF2T 以及 EMDF2bT,將受體單體 EMD 搭配不同拉電子官能基的給體單體,此外擔心其結構過於平坦而造成溶解度太差,故加入長碳鏈噻吩以增加溶解度與延長共軛長度,後續進行一系列光學性質與物性測量的探討,最後也將高分子化合物搭配不同的 n-type 與 p-type 材料混摻製成有機光伏電池元件,並測量轉換效率以及分析元件表現的結果。
關鍵字: 多環芳香烴化合物、價荷傳輸能力、π-π 堆疊能力、高分子、有機光伏電池
Abstract
EMD is a polycyclic aromatic hydrocarbon compound, which advantages is too stable to be destroyed easily. Also it is a huge conjugated monomer that helps the charge transport ability within a molecule. The ability of π-π stacking between molecules is strong because of good planarity, which benefits the intermolecular charges transfer. As mentioned above, EMD is a suitable materials for used in the field of photovoltaic.
In this thesis, it intends to synthesize four polymers of EMD series, namely EMDCN2TVT, EMDCN2bT, EMDF2T and EMDF2bT, respectively. The acceptor monomer EMD is matched with different electron-withdrawing functional groups of donor monomers. In addition, to concern the structure has high planarity that causes the poor solubility, alkyl chain thiophene was added to increase the solubility and to increase the conjugation. A series of optical properties and physical property measurements were discussed subsequently. Finally, the device of photovoltaics was made of n-type or p-type polymers, and the conversion efficiency as well as the performance of the device were measured.
Keywords: polycyclic aromatic hydrocarbon compounds, charge transport ability, π-π stacking, polymer, photovoltaics.
第五章、 參考文獻
1. 為何台灣要發展再生能源?. https://www.pvesco168.com.tw/news-detail-2429620.html.
2. 全球電能新未來. https://sa.ylib.com/MagArticle.aspx?id=4719.
3. 太陽能的原理、種類與優缺點. https://www.stockfeel.com.tw/%E5%A4%AA%E9%99%BD%E8%83%BD%E7%9A%84%E5%8E%9F%E7%90%86%E3%80%81%E7%A8%AE%E9%A1%9E%E8%88%87%E5%84%AA%E7%BC%BA%E9%BB%9E/.
4. 維基百科 - 太陽. https://zh.m.wikipedia.org/zh-tw/%E5%A4%AA%E9%98%B3.
5. 百科知識 - 太陽光譜. https://www.easyatm.com.tw/wiki/%E5%A4%AA%E9%99%BD%E5%85%89%E8%AD%9C.
6. 維基百科 - 大氣質量.
https://zh.wikipedia.org/zhtw/%E5%A4%A7%E6%B0%94%E8%B4%A8%E9%87%8F_(%E5%A4%AA%E9%98%B3%E8%83%BD).
7. 什麼是大氣質量? 大氣質量如何影響太陽光?.
https://enlitechnology.com/zh-hant/blog-zh-hant/pv-zh-hant/ss-x-solar-simulatior-zh-hant/solar-simulator-01/.
8. Becquerel, A. E. C. R. Acad. Sci. 1839, 9, 561.
9. Einstein, A. Ann. Phys. 1905, 6, 132-148.
10. 薄膜太陽能電池. https://www.piip.pro/?page_id=1484.
11. Chapin, D. M.; Fuller, C. S.; Pearson, G. L. J. Appl. Phys. 1954, 25, 676-677.
12. 維基百科 - 太陽能電池. https://zh.wikipedia.org/wiki/%E5%A4%AA%E9%98%B3%E8%83%BD%E7%94%B5%E6%B1%A0.
13. Tang, C. W.; Albrecht, A. C. J. Chem. Phys. 1975, 62, 2139-2149.
14. He, D. X. Perovskite Photovoltaics 2015-2025: Technologies, Markets, Players. https://www.idtechex.com/tw/research-report/perovskite-photovoltaics-2015-2025-technologies-markets-players/442.
15. 太陽能電池.
https://physcourse.thu.edu.tw/galechu/wpcontent/uploads/sites/8/2018/09/%E5%A4%AA%E9%99%BD%E8%83%BD%E9%9B%BB%E6%B1%A0-0927new.pdf.
16. Zhao, J. Sol. Energ. Mat. Sol. Cells 2004, 82, 53-64.
17. Jianhua Zhao; Green, A. W. a. M. A. Res. Appl. 1999, 7, 471-474.
18. Green, M. A. Prog. Photovolt.: Res. Appl. 2009, 17, 183-189.
19. Masuko, K.; Shigematsu, M.; Hashiguchi, T.; Fujishima, D.; Kai, M.; Yoshimura, N.; Yamaguchi, T.; Ichihashi, Y.; Mishima, T.; Matsubara, N.; Yamanishi, T.; Takahama, T.; Taguchi, M.; Maruyama, E.; Okamoto, S. IEEE J. Photovolt. 2014, 4, 1433-1435.
20. Green, M. A.; Hishikawa, Y.; Dunlop, E. D.; Levi, D. H.; Hohl‐Ebinger, J.; Ho‐Baillie, A. W. Y. Prog. Photovolt.: Res. Appl. 2017, 26, 3-12.
21. Yoshikawa, K.; Kawasaki, H.; Yoshida, W.; Irie, T.; Konishi, K.; Nakano, K.; Uto, T.; Adachi, D.; Kanematsu, M.; Uzu, H.; Yamamoto, K. Nat. Energy 2017, 2, 17032.
22. Ramanujam, J.; Bishop, D. M.; Todorov, T. K.; Gunawan, O.; Rath, J.; Nekovei, R.; Artegiani, E.; Romeo, A. Prog. Mater. Sci. 2020, 110, 100619.
23. Noufi, R.; Zweibel, K. 2006 IEEE 4th World Conference on Photovoltaic Energy Conference. 2006, 317-320.
24. Albin, D. S.; Carapella, J. J.; Tuttle, J. R.; Noufi, R. Mat. Res. Soc. Symp. Proc. 1992, 228, 267-272.
25. Kazmerski, L. L.; White, F. R.; Morgan, G. K. Appl. Phys. Lett. 1976, 29, 268-270.
26. First Solar, I. First Solar Achieves Yet Another Cell Conversion Efficiency World Record. https://investor.firstsolar.com/news/press-release-details/2016/First-Solar-Achieves-Yet-Another-Cell-Conversion-Efficiency-World-Record/default.aspx.
27. Hall, R. S.; Lamb, D.; Irvine, S. J. C. Energy Sci. Eng. 2021, 9, 606-632.
28. Jamalullail, N.; Mohamad, I. S.; Norizan, M. N.; Baharum, N. A. 2017 IEEE 15th Student Conference on Research and Development (SCOReD). 2017, 344-349.
29. O'Regan, B.; Gratzelt, M. Nat. 1911, 353, 737-739.
30. Zeng, K.; Chen, Y.; Zhu, W. H.; Tian, H.; Xie, Y. J. Am. Chem. Soc. 2020, 142, 5154-5161.
31. Cai, D.; Zhang, J.; Wang, J. Y.; Ma, Y.; Wan, S.; Wang, P.; Wei, Z.; Zheng, Q. J. Mater. Chem. A 2020, 8, 24543-24552.
32. Gűnes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. Rev. 2007, 107, 1324-1338.
33. Tang, C. W. Appl. Phys. Lett. 1986, 48, 183-185.
34. He, C.; Pan, Y.; Lu, G.; Wu, B.; Xia, X.; Ma, C. Q.; Chen, Z.; Zhu, H.; Lu, X.; Ma, W.; Zuo, L.; Chen, H. Adv. Mater. 2022, 34, 2203379.
35. Ozaki, M.; Peebles, D. L.; Weinberger, B. R.; Chiang, C. K.; Gau, S. C.; Heeger, A. J.; MacDiarmid, A. G. Appl. Phys. Lett. 1979, 35, 83-85.
36. Morita, S.; Zakhidov, A. A.; Yoshino, K. Solid State Commun. 1992, 82, 249-252.
37. Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudi, F. Sci. 1992, 258, 1474-1476.
38. Hummelen, J. C.; Knight, B. W.; LePeq, F.; Wudl, F.; Yao, J.; Wilkins, C. L. J. Org. Chem. 1995, 60, 532-538.
39. Yu, G., Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Sci. 1995, 270, 1789-1791.
40. NREL Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html.
41. Tiwari, S.; Tiwari, T.; Carter, S. A.; Scott, J. C.; Yakhmi, J. V. Handbook of Ecomaterials. 2019, 1055-1101.
42. Kallmann, H.; Pope, M. J. Chem. Phys. 1959, 30, 585-586.
43. Sariciftci, N. S.; Braun, D.; Zhang, C.; Srdanov, V. I.; Heeger, A. J.; Stucky, G.; Wudl, F. Appl. Phys. Lett. 1993, 62, 585-587.
44. 國立交通大學應用化學系, 陳許. https://jtchen.lab.nycu.edu.tw/research/c-research-opv.htm.
45. Hou, J.; Inganas, O.; Friend, R. H.; Gao, F. Nat. Mater. 2018, 17, 119-128.
46. Zhang, J.; Tan, H. S.; Guo, X.; Facchetti, A.; Yan, H. Nat. Energy 2018, 3, 720-731.
47. Cheng, P.; Li, G.; Zhan, X.; Yang, Y. Nat. Photon. 2018, 12, 131-142.
48. Cheng, P.; Wang, J.; Zhan, X.; Yang, Y. Adv. Energy Mater. 2020, 10, 2000746.
49. Lin, Y.; Zhan, X. Mater. Horizons 2014, 1, 470-488.
50. Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. Joule 2019, 3, 1140-1151.
51. Pang, S.; Zhou, X.; Zhang, S.; Tang, H.; Dhakal, S.; Gu, X.; Duan, C.; Huang, F.; Cao, Y. ACS Appl. Mater. Interfaces 2020, 12, 16531-16540.
52. Li, Z. Y.; Zhong, W. K.; Ying, L.; Li, N.; Liu, F.; Huang, F.; Cao, Y. Chin. J. Polym. Sci. 2019, 38, 323-331.
53. Long, X.; Yao, J.; Cheng, F.; Dou, C.; Xia, Y. Mate. Chem. Front. 2019, 3, 70-77.
54. Yao, H.; Bai, F.; Hu, H.; Arunagiri, L.; Zhang, J.; Chen, Y.; Yu, H.; Chen, S.; Liu, T.; Lai, J. Y. L.; Zou, Y.; Ade, H.; Yan, H. ACS Energy Lett. 2019, 4, 417-422.
55. Zhao, C.; Guo, Y.; Zhang, Y.; Yan, N.; You, S.; Li, W. J. Mater. Chem. A 2019, 7, 10174-10199.
56. Zhang, Y.; Wu, B.; He, Y.; Deng, W.; Li, J.; Li, J.; Qiao, N.; Xing, Y.; Yuan, X.; Li, N.; Brabec, C. J.; Wu, H.; Lu, G.; Duan, C.; Huang, F.; Cao, Y. Nano. Energy 2022, 93, 106858.
57. Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.; Friend, R. H.; Morattlt, S. C.; Holmes, A. B. Nat. 1995, 376, 498-500.
58. Smet, M.; Dijk, J. V.; Dehaen, W. Synlett 1999, 4, 495-497.
59. Lau, C. K.; Dufresne, C.; Belanger, P. C.; Piétré, S.; Scheigetz, J. J. Org. Chem. 1986, 51, 3038-3043.
60. Mohebbi, A. R.; Wudl, F. Chem. 2011, 17, 2642-6.
61. Zawisza, A. M.; Muzart, J. Tetrahedron Lett. 2007, 48, 6738-6742.
62. Zawisza, A. M.; Ganchegui, B.; González, I.; Bouquillon, S.; Roglans, A.; Hénin, F.; Muzart, J. J. Mol. Catal. A: Chem. 2008, 283, 140-145.
63. Kim, H. S.; Lee, H. S.; Kim, S. H.; Kim, J. N. Tetrahedron Lett. 2009, 50, 3154-3157.
64. Muzart, J. Tetrahedron 2009, 65, 8313-8323.
65. Chao, Y. C.; Yeh, S. C.; Hsu, H. L.; Jiang, B. H.; Sun, K. H.; Chen, C. T.; Chen, C. P.; Jeng, R. J. Org. Electron. 2017, 49, 114-122.
66. Mohebbi, A. R.; Yuen, J.; Fan, J.; Munoz, C.; Wang, M.; Shirazi, R. S.; Seifter, J.; Wudl, F. Adv. Mater. 2011, 23, 2642-2646.
67. Tsukamoto, K.; Takagi, K.; Nagano, S.; Hara, M.; Ie, Y.; Osakada, K.; Takeuchi, D. J. Mater. Chem. C 2019, 7, 12610-12618.
68. Tsukamoto, K.; Takagi, K.; Yamamoto, K.; Ie, Y.; Fukushima, T. J. Mater. Chem. C 2021, 9, 5920-5929.
69. Chen, H. Y.; Golder, J.; Yeh, S. C.; Lin, C. W.; Chen, C. T.; Chen, C. T. RSC Adv. 2015, 5, 3381-3385.
70. Bown, M.; Dunn, C. J.; Forsyth, C. M.; Kemppinen, P.; Singh, T. B.; Skidmore, M. A.; Winzenberg, K. N. Aust. J. Chem. 2012, 65, 145-152.
71. Xiao, B.; Tang, A.; Zhang, J.; Mahmood, A.; Wei, Z.; Zhou, E. Adv. Energy Mater. 2017, 7, 1600369.
72. Wu, J. L.; Lin, C. W.; Golder, J.; Lin, T. W.; Chen, C. T.; Chen, C. T. Org. Electron. 2018, 61, 185-196.
73. Fenta, A. D.; Lu, C. F.; Gidey, A. T.; Chen, C. T. ACS Appl. Energy Mater. 2021, 4, 5274-5285.