| 研究生: |
蔡建宏 Chien-Hung Tsai |
|---|---|
| 論文名稱: |
衰逝全反射生醫感測儀之研製 Attenuated total reflection biosensors |
| 指導教授: |
陳顯禎
S.J. Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 表面電漿共振 、衰逝全反射 |
| 外文關鍵詞: | attenuated total reflection, surface plasmon resonance |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用表面電漿共振(surface plasmon resonance,SPR)現象所研發出之即時感測器,近年來被廣泛地研究與討論。其具有靈敏度高、不需標定(label free)、動態分析(kinetic study)、即時檢測並可大量平行篩檢(high-throughput screening)等優點。在生醫檢測方面,已逐漸受到重視。
就加入稜鏡耦合方式之角度量測衰逝全反射感測儀,其解析度則時常受限於角度旋轉儀器的條件,無法提升。如何有效利用旋轉平台之解析度,及提升感測靈敏度及解析度,則是本文的重點。以創新的光路設計,配合多層膜之感測器設計,同時量測TM及TE模態之反射光強,花最少的檢測時間及次數,得到最多的待測物質反應資訊,且即時修正正確的最小反射強度角度值。
介電常數與膜厚的計算方式求解,經由Lorentzian近似關係式配合Fresnel反射係數方程式,可由一次量得之SPR反應曲線圖形,即時求得其值,再配合最佳化線性資料分析(optimal linear data analysis),可將誤差降至5%以內。
配合所有的機構及計算,在生物分子反應分析(biomolecular interaction analysis,BIA)上,可即時得知反應之動力學,並進而定量分析分子濃度與膜厚,此是傳統之螢光標定法所無法完成的。
The biosensors based on surface plasmon resonance (SPR) has been often used as tools for directly detecting the kinetic interaction of unlabelled biological molecules at surface in real time. The SPR biosensors have many advantages over others, such as the high sensitivity, label free, kinetic study, and high-throughput screening etc.. The potential of this technology is gradually being noticed in the field of biological diagnostic.
The resolution of detector which is made by the method of attenuated total reflection is often limited by the goniometer. The topic in this paper is to efficiently use a novel resolution of the goniometer to improve sensitivity and resolution. Use design of optical system and multi-layer sensors, we can measure the reflected light, both TM and TE modes, simultaneously, use less detector time and frequency get more information and we can modify SPR angle.
When the dielectric constant and thickness of unknown medium problem are solved, we can reduce the tolerance under 5% by optimal linear data analysis with the data solved by Lorentzian type relation and Fresnel equations.
The advantage of this biosensor is that we can get kinetic study by using this system, and analyze molecular concentration and thickness. Therefore, the traditional fluorescence can not achieve this requirement.
[1] R.H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 1957;106:874.
[2] C.J. Powell and J.B. Swan, “Effect of oxidation on the characteristics loss sepectra of aluminum and magnesium,” Phys Rev. 1960;118:640.
[3] J. Homola and S.S. Yee, “Surface plasmon resonance sensors: review,” Sensors and Actuators 1999;B 54:3-15.
[4] V. Owen, “Real-time optical immunosensors – a commercial reality,” Biosensors & Bioelectronics 1997;12 No.1.
[5] C.C. Teng and H.T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 1990;56(18):1734-1736.
[6] Y. Jiang, Z. Cao, G. Chen, X. Dou, and Y. Chen, “Low voltage electro-optic polymer light modulator using attenuated total internal reflection,” Optics & Laser Technolory 2001;33:417-420.
[7] G.G. Nenninger, J. Homola, S.S. Yee, and P. Tobiska, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sensors and Actuators 2001;B 74:145-151.
[8] G. Höhler and E. A. Niekisch, Surface plasmons on smooth and rough surfaces and on gratings, Springer-Verlag Berlin Heidelberg, 1988.
[9] K. Welford, “The method of attenuated total reflection,” IOP Short Meeting Series No.9, Institute of Physics 1987:25-78.
[10] T.M. Chinowsky, L.S. Jung, and S.S. Yee, ”Optimal linear data analysis for surface plasmon resonance biosensors,” Sensors and Actuators 1999;B 54:87-97.
[11] J.J. Chyou, S.-J. Chen, J.T. Chou, et al,“Multi-experiment linear data analysis for ATR biosensors ,“ SPIE 2002;4819.
[12] M. Born and E. Wolf, Principles of Optics, Pargamon, New York, 1964.
[13] 李正中, 薄膜光學與鍍膜技術, 藝軒圖書出版社, 1999.
[14] J. Davies, Surface analytical techniques for probing biomaterial processes, CRC Press. Inc., 1996.
[15] Y. Cheng, C.H. Lin, Y.R. Chang, L. Hsu, and M.K. Chyu, “Electro-optically modulated biomolecular-interaction analysis sensor,” SPIE 2000;4082.
[16] H.J. Watts, D. Yeung, and H. Parkes “Real-time detection and quantification of DNA hybridization by an optical biosensor,” Analytical Chemistry, 1995; 23:16.
[17] F.F. Bier, F. Kleinjung, and F.W. Scheller, “Real-time measurement of nucleic-acid hybridization using evanescent-wave sensors: steps towards the genosensor,” Sensors and Acturators 1997;B 38-39:78-82.
[18] F.F. Bier and F.W. Scheller, “Label-free observation of DNA-hybridisation and endonuclease activity on a wave guide surface using a grating coupler,” Biosensors & Bioelectronics 1996;11(6/7):669-674.
[19] J. Melendez, R. Carr, D.U. Bartholomew, et al, “A commercial solution for surface plasmon sensing,” Sensors and Actuators 1996;B 35-36:212-216.
[20] S. Toyama, A. Shoji, Y. Ikariyama, and N. Doumae, “Design and fabrication of a waveguide-coupled prism device for surface plasmon resonance sensor,” Sensors and Actuators 2000;B 65:32-34.
[21] B. Liedberg, C. Nylander, and I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sensors and Actuators 1983;4:299-304.