跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張珮辰
Pei-chen Chang
論文名稱: 以專案管理鐵三角理論為基礎來建立專案變更之影響分析與協商模型
The Development of Iron-Triangle Based Impact Analysis and Negotiation Model for Project Change
指導教授: 陳仲儼
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理學系
Department of Information Management
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 83
中文關鍵詞: 專案變更專案管理鐵三角變更影響評估變更協商專案管理
外文關鍵詞: Project change, Iron-Triangle, Change impact analysis, Project change negotiation, Project management
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在專案開發過程,變更的發生是不可避免的,而且可能發生在專案的任何一個階段。當專案其中一個因素發生變更,將造成至少一個其他因素產生相應的變化,若是缺乏妥善的協調與權衡,將可能對專案品質造成負面影響。然而,目前研究對專案變更的權衡議題多專注於時間和成本的取捨,較少有整體性的綜合評估。如何對專案變更可能造成的影響進行整體性評估,便為一個重要課題,也是本研究欲解決的目標。
    因此,本研究嘗試以專案管理鐵三角理論為基礎,建立一個專案變更影響分析的量化模型,以工期、價格、工作範圍作為模型的主要構面,組成一個視覺化三軸模型。利用組織的歷史專案數據進行分析模型的訓練,並配合欲評估之專案的活動清單與執行現況,協助專案相關人員在變更發生時,能以品質不變為目標,進行專案整體影響程度的相關評估與協商。本研究將以Web-based方式實作所提出之模型,利用電子化系統輔助繁複的量化運算,提升模型運用的效率;同時使用者亦可透過網頁系統,便利地操作視覺化模型以進行相關評估。透過本研究所提出之模型,當專案在任何階段發生變更時,無論是專案執行前或專案進行中,專案關鍵人員都能利用模型進行整體性的專案變更影響評估。


    Change is inevitable during project development and could be discovered throughout the project’s life cycle. When change in project factor occurs, at least one other factor is likely to be affected. The project stakeholders must be able to balance the influence of each factor in order to achieve a successful project. However, the studies on the trade-off of project change mostly focus on crashing issues. How to make a comprehensive analysis for project change is the subject of this paper.
    In this study, a quantitative analysis model which is based on Iron-Triangle of Project Management is developed. The model consists of three dimensions: time, price, and scope. The training of the model is performed upon the historical project data of the project team. The context of project activities is also considered in the model. Once the project change occurs, stakeholders could analyze and negotiate for the change impact in order to maintain the quality of the project. The model proposed in this study would be implemented via web-based system, and is expected to assist project stakeholders in assessing the change impact in any phase of project’s life cycle.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vi 表目錄 vii 公式目錄 viii 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究目的 3 1.4 研究假設 4 1.5 論文架構 4 第二章 文獻探討 6 2.1 專案變更 7 2.2 軟體專案變更管理之相關研究 8 2.3 三重限制(Triple Constraint) 11 第三章 研究方法 13 3.1 概念說明 13 3.2 方法設計 19 3.2.1 專案建立流程 22 3.2.2 模型訓練流程 25 3.2.3 模型的建立流程 26 3.2.4 模型的使用流程 28 第四章 系統展示 34 4.1 建立新專案與專案活動資料 34 4.2 利用組織歷史專案資料來訓練模型 40 4.3 本專案的模型建立與現況的維護 42 4.4 進行變更影響評估 46 4.5 回饋專案數據 50 第五章 驗證與討論 52 5.1 資料收集與分析 52 5.2 實驗方法設計 54 5.3 結果分析與討論 56 5.4 研究限制 62 第六章 結論 63 6.1 研究貢獻 63 6.2 未來展望 64 參考文獻 65

    [1] 莊孟蒼,2013,設計並建立一個基於軟體專案變更影響之綜合分析模型,國立中央大學碩士論文。
    [2] Ahmad, A., & Dey, L. (2007). A k-mean clustering algorithm for mixed numeric and categorical data. Data & Knowledge Engineering, 63(2), 503-527.
    [3] Al-Sedairy, S. T. (2001). A change management model for Saudi construction industry. International Journal of Project Management, 19(3), 161-169.
    [4] Alguwaizani, A. (2012). Degeneracy on K-means clustering. Electronic Notes in Discrete Mathematics, 39, 13-20.
    [5] Ali, U., & Kidd, C. (2014). Barriers to effective configuration management application in a project context: An empirical investigation. International Journal of Project Management, 32(3), 508-518.
    [6] Black, S. (2008). Deriving an approximation algorithm for automatic computation of ripple effect measures. Information and Software Technology,50(7), 723-736.
    [7] Borra, S., & Di Ciaccio, A. (2010). Measuring the prediction error. A comparison of cross-validation, bootstrap and covariance penalty methods. Computational statistics & data analysis, 54(12), 2976-2989.
    [8] Braglia, M., & Frosolini, M. (2014). An integrated approach to implement Project Management Information Systems within the Extended Enterprise. International Journal of Project Management, 32(1), 18-29.
    [9] Chang, D. X., Zhang, X. D., & Zheng, C. W. (2009). A genetic algorithm with gene rearrangement for K-means clustering. Pattern Recognition, 42(7), 1210-1222.
    [10] Cheikhi, L., Abran, A., & Desharnais, J. M. (2012, October). Analysis of the ISBSG software repository from the ISO 9126 view of software product quality. In IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society (pp. 3086-3094). IEEE.
    [11] Chen, C. Y., & Chen, P. C. (2009). A holistic approach to managing software change impact. Journal of Systems and Software, 82(12), 2051-2067.
    [12] Chen, S. P., & Tsai, M. J. (2011). Time–cost trade-off analysis of project networks in fuzzy environments. European Journal of Operational Research, 212(2), 386-397.
    [13] Choi, K., & Kwak, Y. H. (2012). Decision support model for incentives/disincentives time–cost tradeoff. Automation in Construction, 21, 219-228.
    [14] Delen, D., Walker, G., & Kadam, A. (2005). Predicting breast cancer survivability: a comparison of three data mining methods. Artificial intelligence in medicine, 34(2), 113-127.
    [15] Di Fatta, G., Blasa, F., Cafiero, S., & Fortino, G. (2013). Fault tolerant decentralised K-Means clustering for asynchronous large-scale networks. Journal of Parallel and Distributed Computing, 73(3), 317-329.
    [16] Dillibabu, R., & Krishnaiah, K. (2005). Cost estimation of a software product using COCOMO II. 2000 model–a case study. International Journal of Project Management, 23(4), 297-307.
    [17] Estublier, J., Leblang, D., Hoek, A. V. D., Conradi, R., Clemm, G., Tichy, W., & Wiborg-Weber, D. (2005). Impact of software engineering research on the practice of software configuration management. ACM Transactions on Software Engineering and Methodology (TOSEM), 14(4), 383-430.
    [18] Fang, C., Jin, W., & Ma, J. (2013). k’-Means algorithms for clustering analysis with frequency sensitive discrepancy metrics. Pattern Recognition Letters, 34(5), 580-586.
    [19] Guerrero, M. A., Villacampa, Y., & Montoyo, A. (2014). Modeling construction time in Spanish building projects. International Journal of Project Management, 32(5), 861-873.
    [20] Hazır, Ö., Haouari, M., & Erel, E. (2010). Robust scheduling and robustness measures for the discrete time/cost trade-off problem. European Journal of Operational Research, 207(2), 633-643.
    [21] Horsburgh, J. S., & Reeder, S. L. (2014). Data visualization and analysis within a Hydrologic Information System: Integrating with the R statistical computing environment. Environmental Modelling & Software, 54, 51-61.
    [22] Hwang, B. G., & Low, L. K. (2012). Construction project change management in Singapore: Status, importance and impact. International Journal of Project Management, 30(7), 817-826.
    [23] Ibbs, C. W. (1997). Quantitative impacts of project change: size issues.Journal of Construction Engineering and Management, 123(3), 308-311.
    [24] Ibbs, C. W., Wong, C. K., & Kwak, Y. H. (2001). Project change management system. Journal of Management in Engineering, 17(3), 159-165.
    [25] IEEE. (2012). IEEE Standard for Configuration Management in Systems and Software Engineering : IEEE 828-2012. In IEEE Standards Association.
    [26] ISBSG The global and independent source of data and analysis for the IT industry (2014). http://www.isbsg.org
    [27] Ishii, N., Takano, Y., & Muraki, M. (2014). An order acceptance strategy under limited engineering man-hours for cost estimation in Engineering–Procurement–Construction projects. International Journal of Project Management, 32(3), 519-528.
    [28] Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), 651-666.
    [29] Kim, J., Kang, C., & Hwang, I. (2012). A practical approach to project scheduling: considering the potential quality loss cost in the time–cost tradeoff problem. International Journal of Project Management, 30(2), 264-272.
    [30] Kim, J. H. (2009). Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap. Computational Statistics & Data Analysis, 53(11), 3735-3745.
    [31] Kumaraswamy, M., Miller, D., Yogeswaran, K., (1998). Claims for extension of time in civil engineering projects. Construction Management and Economics, 16(3), 283-294.
    [32] Lechler, T. G., Ronen, B., & Stohr, E. A. (2005). Critical chain: a new project management paradigm or old wine in new bottles?. Engineering Management Journal, 17(4), 45-58.
    [33] Lee, S.H., Peña-Mora, F., Park, M., (2005). Quality and Change Management Model for Large Scale Concurrent Design and Construction Projects. Journal of Construction Engineering and Management, 131(8), 890-902.
    [34] Li, B., Sun, X., & Keung, J. (2013). FCA-CIA: An Approach of Using FCA to Support Cross-level Change Impact Analysis for Object Oriented Java Programs. Information and Software Technology, 55(8), 1437-1449.
    [35] Li, Q., Salman, R., Test, E., Strack, R., & Kecman, V. (2013). Parallel multitask cross validation for Support Vector Machine using GPU. Journal of Parallel and Distributed Computing, 73(3), 293-302.
    [36] Mendes, E., & Lokan, C. (2008). Replicating studies on cross-vs single-company effort models using the ISBSG Database. Empirical Software Engineering, 13(1), 3-37.
    [37] Mirza, M. N., Pourzolfaghar, Z., Shahnazari, M. (2013). Significance of Scope in Project Success. Procedia Technology, 9, 722-729.
    [38] Molinaro, A. M., Simon, R., & Pfeiffer, R. M. (2005). Prediction error estimation: a comparison of resampling methods. Bioinformatics, 21(15), 3301-3307.
    [39] Papke-Shields, K. E., Beise, C., & Quan, J. (2010). Do project managers practice what they preach, and does it matter to project success?. International Journal of Project Management, 28(7), 650-662.
    [40] Park, P. S., & Kshirsagar, A. M. (1996). Correlation between successive values of Anderson's classification statistic in the hold-out method. Statistics & probability letters, 27(3), 259-265.
    [41] Park, S., & Bae, D. H. (2011). An approach to analyzing the software process change impact using process slicing and simulation. Journal of Systems and Software, 84(4), 528-543.
    [42] Partington, D. (1996). The project management of organizational change.International Journal of Project Management, 14(1), 13-21.
    [43] Pendharkar, P. C., & Rodger, J. A. (2009). The relationship between software development team size and software development cost. Communications of the ACM, 52(1), 141-144.
    [44] Perminova, O., Gustafsson, M., & Wikström, K. (2008). Defining uncertainty in projects–a new perspective. International Journal of Project Management, 26(1), 73-79.
    [45] Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P., & Still, J. (2008). The impact of agile practices on communication in software development. Empirical Software Engineering, 13(3), 303-337.
    [46] Prapamontol, T., Sutan, K., Laoyang, S., Hongsibsong, S., Lee, G., Yano, Y., Hunter, R. E., Ryan, P. B., Barr, D. B., Panuwet, P. (2014). Cross validation of gas chromatography-flame photometric detection and gas chromatography–mass spectrometry methods for measuring dialkylphosphate metabolites of organophosphate pesticides in human urine. International Journal of Hygiene and Environmental Health, 217(4), 554-566.
    [47] Project Management Institute. (2004). A Guide to the Project Management Body of Knowledge (PMBOK® Guide) Third Edition. In Project Management Institute.
    [48] Project Management Institute. (2008). A Guide to the Project Management Body of Knowledge (PMBOK® Guide) Fourth Edition. In Project Management Institute.
    [49] Rand, G. K. (2000). Critical chain: the theory of constraints applied to project management. International Journal of Project Management, 18(3), 173-177.
    [50] Rovegard, P., Angelis, L., & Wohlin, C. (2008). An empirical study on views of importance of change impact analysis issues. Software Engineering, IEEE Transactions on, 34(4), 516-530.
    [51] Shao, C., Paynabar, K., Kim, T. H., Jin, J. J., Hu, S. J., Spicer, J. P., Wang, H., & Abell, J. A. (2013). Feature selection for manufacturing process monitoring using cross-validation. Journal of Manufacturing Systems, 32(4), 550-555.
    [52] Stasis, A., Whyte, J., & Dentten, R. (2013). A Critical Examination of Change Control Processes. Procedia CIRP, 11, 177-182.
    [53] Steyn, H. (2002). Project management applications of the theory of constraints beyond critical chain scheduling. International Journal of Project Management,20(1), 75-80.
    [54] Turner, J. R., & Müller, R. (2003). On the nature of the project as a temporary organization. International Journal of Project Management, 21(1), 1-8.
    [55] Turver, R. J., & Munro, M. (1994). An early impact analysis technique for software maintenance. Journal of Software Maintenance: Research and Practice, 6(1), 35-52.
    [56] Tzortzis, G., & Likas, A. (2014). The MinMax k-Means clustering algorithm. Pattern Recognition, 47(7), 2505-2516.
    [57] Voropajev, V. (1998). Change management—A key integrative function of PM in transition economies. International Journal of Project Management, 16(1), 15-19.
    [58] Voss, M. (2012). Impact of customer integration on project portfolio management and its success—Developing a conceptual framework.International Journal of Project Management, 30(5), 567-581.
    [59] Warburton, R. D. (2011). A time-dependent earned value model for software projects. International Journal of Project Management, 29(8), 1082-1090.
    [60] Yang, F., & Xiao, B. J. (2012). A web based MDSplus data analysis and visualization system for EAST. Fusion Engineering and Design, 87(12), 2161-2165.
    [61] Zhang, L. (2013). Managing project changes: Case studies on stage iteration and functional interaction. International Journal of Project Management, 31(7), 958-970.
    [62] Zhao, Z. Y., Lv, Q. L., Zuo, J., & Zillante, G. (2009). A Prediction System for Change Management in Construction Project. Journal of Construction Engineering and Management, 136(6), 659-669.
    [63] Zucchini, W. (2000). An introduction to model selection. Journal of Mathematical Psychology, 44(1), 41-61.

    QR CODE
    :::