跳到主要內容

簡易檢索 / 詳目顯示

研究生: 簡于寧
Yu-Ning Chien
論文名稱:
The temporal dynamics of the code-switching between alphabetic and logographic languages in unbalancedChinese-English bilinguals
指導教授: 吳嫻
Denise H. Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 認知與神經科學研究所
Graduate Institute of Cognitive and Neuroscience
畢業學年度: 100
語文別: 英文
論文頁數: 144
中文關鍵詞:
外文關鍵詞:
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 先前的研究闡明,當雙語使用者在兩種語言之間做轉換時,會造成轉換上的耗損。其中,有兩種假說針對語言轉換時所造成的耗損提出了可能的解釋,其一是抑制控制假說(Green, 1998),另一個則是雙語相對激活假說 (Grainger & Dijkstra, 1992; van Heuven, Dijkstra & Grainger, 1998)。當前的研究目的主要是希望能夠探討當拼音文字 (即:英文)與象形文字(即:中文)此兩種語言在
    轉換的過程中,其語言轉換所造成的耗損是與雙語相對激活假說 (Grainger & Dijkstra, 1992; van Heuven, Dijkstra & Grainger, 1998) 所提出的與語言獨特的編碼有關,抑或是與抑制控制假說 (Green, 1998) 所提出的與一般性作業基模相關。在實驗中,採用了隱蔽促發刺激的範式(masked priming paradigm),其觸發刺激(prime)的呈現時間在實驗一與實驗二分別為100 毫秒與30 毫秒,並且,在兩個實驗中各自有二十位的中英雙語使用者參與實驗。在實驗中的觸發刺激(prime)有三種不同的類型,分別為中文,英文以及韓文隨機出現。實驗中,受試者需要在中文與英文為主要刺激(target)的兩個組別中皆進行語意判別(semantic categorization judgment)作業。實驗當中,利用事件相關電位(eventrelated
    potential)分別蒐集在中文與英文為主要刺激(target)時,中文、英文以及韓文三種觸發刺激(prime)其腦電波變化。
    實驗一中,不論是在中文或是英文為主要刺激(target)的組別中,英文觸發刺激(prime)相較於中文與韓文而言,引發了較強的N/P150。接著,韓文在中文與英文為主要刺激(target)的組別中,相較於中文與英文的觸發刺激(prime),引起了較強的N250。當主要刺激(target)出現後大約250 毫秒,我們發現了編碼轉換的效果(code-switching effect)。此效果在兩種不同的主要刺激(target)的組別
    ii中皆發現,當觸發刺激(prime)與主要刺激(target)為不同語言時,相較於當觸發刺激(prime)與主要刺激(target)為同種語言時,引發了較強的P325。再者,英文觸發刺激(English prime)在中文為主要刺激(Chinese target)的組別中引發了較大的N400。然而,在英文為主要刺激(English target)的組別中,中文觸發刺激
    (Chinese prime)相較於英文與韓文而言,則沒有引發較大的N400。
    在實驗二中,當觸發刺激(prime)的呈現時間在閾值(threshold)之下時,發現當觸發刺激(prime)與主要刺激(target)為兩種不同語言時(即:英文的觸發刺激配上中文的主要刺激,與中文的觸發刺激配上英文的主要刺激組別),相較於當觸發刺激(prime)與主要刺激(target)為同種語言時(即:中文的觸發刺激配上中文的主要刺激,與英文的觸發刺激配上英文的主要刺激),引發了較大的N1 編碼
    轉換效果(code-switching effect)。在主要刺激(target)出現後的170 至290 毫秒之間,在中文為主要刺激(target)的組別中,韓文相較於中文與英文,引發了較正極走向的波。另一方面,在英文為主要刺激(target)的組別中,英文相較於韓文與中文,產生了較正極走向的波。 在中文與英文為主要刺激(target)的組別中,皆沒有發現N250 編碼轉換效果(code-switching effect)。另一方面,在英文為主要刺激(target)的組別中,發現中文為觸發刺激(Chinese prime)時,相較於英文觸發刺激(English prime),引發了較強的N400 編碼轉換效果(code-switching effect)。
    在實驗一與實驗二中發現的編碼轉換效果(code-switching effect)暗示了在文字辨識歷程中,語言獨特編碼的自動調節以及一般性作業基模的控制,在拼音文字與象形文字做語言轉換時,皆會造成語言轉換的耗損,而此效果發生在不同階段的語言處理歷程。


    Previous studies have demonstrated that changing between languages in
    bilinguals incurred switching costs. Two models, the inhibitory control (IC) model
    (Green, 1998) and the bilingual interactive activation (BIA) model (Grainger &
    Dijkstra, 1992; van Heuven, Dijkstra & Grainger, 1998), have been proposed to
    account for such costs. The aim of the present study was to investigate whether the
    language switching costs between one alphabetic (English) and one logographic
    (Chinese) language are caused by a language-specific code as proposed in the BIA
    model or by the general task schema as proposed by the IC model, or by the
    mechanisms proposed by both the hypotheses. A masked priming paradigm was
    adopted in two experiments with the prime duration in Experiment 1 and 2 to be
    100 ms and 30 ms, respectively. Twenty unbalanced Chinese-English bilinguals were
    recruited in each experiment. Following a prime in one of the three languages
    (Chinese, English, and Korean), participants performed a semantic categorization
    judgment on a Chinese or English target word. Event-related potentials (ERPs) that
    were elicited by the target following a between-language, a within-language, or a nonlexical
    (i.e., Korean) prime were recorded.
    In Experiment 1, the English prime elicited a stronger N/P150 component of
    the prime than the Chinese and Korean prime in both the Chinese and English target
    blocks. Only the Korean prime that are unknown to participants elicited a stronger
    N250 component of the prime in both target blocks. The code-switching effect was
    detected in the ERP components after 250 ms from the target onset. Specifically, the
    between language and the non-lexical conditions elicited a larger P325 component
    than the within language conditions in both target blocks. Moreover, the English
    iv
    prime induced a larger N400 component of the Chinese target word than the Chinese
    and the Korean prime, though the Chinese prime did not induce a larger N400
    component of the English target than the English and then Korean prime.
    In Experiment 2 when the prime was subliminal, the code-switching effect
    was first revealed in the N1 component in showing more negative going waveforms in
    the between-language conditions (i.e., English prime-Chinese target, Chinese prime-
    English target) than in the within-language conditions (i.e., Chinese prime-Chinese
    target, English prime-English target). In the time window of 170-290 ms after the
    target onset, the Korean prime induced more positive going waveforms than the
    English and the Chinese prime in the block of Chinese target words. In the block of
    English target words, however, the English prime was more positive than the Korean
    and the Chinese prime. The N250 code-switching effect was not found in both of the
    target blocks. The N400 code-switching effect was revealed only in the block of
    English target words in showing more negative ERP waveforms in the betweenlanguage
    condition (i.e., Chinese prime-English target) than in the within-language
    condition (i.e., English prime-English target).
    Taken together, the code-switching effects found in Experiment 1 and 2 suggest that the language switching costs between one alphabetic and one logographic language might result from both the automatic modulation of the language-specific code during the visual word recognition process and the control of the general task schema. These effects occur at different stages of linguistic processing and are not mutually exclusive.

    中文摘要......................................................................................................................... i Abstract ........................................................................................................................ iii 誌謝............................................................................................................................... v Table of contents ......................................................................................................... vii List of figure ................................................................................................................. ix Chapter 1. Introduction .................................................................................................. 1 1.1 Temporal dynamics of visual word recognition processes ............................... 3 1.2 Language switching ........................................................................................... 6 1.2.1 Previous behavioral studies investigating the language switching costs ...... 7 1.2.2 The mechanisms underlying the language switching costs: domain general .................................................................................................................... 8 1.2.3 The opposing view of the cause of the language switching costs: the bilingual interactive activation (BIA) model ....................................................... 10 1.2.4 Neurophysiological evidence for the BIA model ....................................... 12 1.2.5 Neurophysiological study: masked cross-script translation priming .......... 13 1.3 The aims of the present study .......................................................................... 14 Chapter 2. Experiment 1 .............................................................................................. 17 2.1. Method .............................................................................................................. 18 2.1.1 Participants .................................................................................................. 18 2.1.2 Material and design ..................................................................................... 18 2.1.3 Procedure .................................................................................................... 19 viii 2.1.4 Apparatus and EEG recording .................................................................... 20 2.1.5 ERP Data pre-processing ............................................................................ 21 2.2. Results ............................................................................................................... 22 2.2.1 Behavioral results ....................................................................................... 22 2.2.2 ERP results ................................................................................................. 23 2.3. Discussion ......................................................................................................... 73 Chapter 3. Experiment 2 ............................................................................................. 79 3.1. Methods ............................................................................................................ 80 3.1.1 Participants ................................................................................................. 80 3.1.2 Material and design .................................................................................... 81 3.1.3 Procedure .................................................................................................... 81 3.1.4 Apparatus and EEG recording .................................................................... 81 3.1.5 ERP Data pre-processing ............................................................................ 82 3.2. Results............................................................................................................... 83 3.2.1 Behavioral results ....................................................................................... 83 3.2.2 ERP results ................................................................................................. 84 3.3. Discussion ....................................................................................................... 116 Chapter 4. General discussion.................................................................................... 121 References .................................................................................................................. 125

    Campbell, J. I. D. (2005). Asymmetrical language switching costs in Chinese–English
    bilinguals'' number naming and simple arithmetic. Bilingualism: Language and
    Cognition, 8(1), 85–91.
    Chang, T. T., & Lee, J. R. (2009). 台灣大學生英語詞彙熟悉度習得年齡評定
    Familiarity and Age of Acquisition Ratings for English Words by Taiwanese
    College Students. 教育心理學報.
    Chauncey, K., Grainger, J., & Holcomb, P. (2008). Code-switching effects in
    bilingual word recognition: A masked priming study with event-related potentials.
    Brain and language, 105(3), 161–174.
    Dufau, S., Grainger, J., & Holcomb, P. J. (2008). An ERP investigation of location
    invariance in masked repetition priming. Cognitive, Affective, & Behavioral
    Neuroscience, 8(2), 222–228.
    Grainger, J., & Beauvillain, C. (1987). Language blocking and lexical access in
    bilinguals. Quarterly Journal of Experimental Psychology, 39A, 295–319.
    Grainger, J., & Dijkstra, T. (1992). On the representation and use of language
    information in bilinguals. Advances in psychology, 83, 207–220.
    Grainger, J., Kiyonaga, K., & Holcomb, P. J. (2006). The time course of orthographic
    and phonological code activation. Psychological science, 17(12), 1021–1026.
    Grainger, J., & Holcomb, P. J. (2009). Watching the word go by: On the time-course
    of component processes in visual word recognition. Language and Linguistics
    Compass, 3(1), 128–156.
    Green, D. W. (1998). Mental control of the bilingual lexico-semantic system.
    126
    Bilingualism: Language and Cognition, 1(02), 67–81.
    Holcomb, P. J., & Grainger, J. (2006). On the time course of visual word recognition:
    An event-related potential investigation using masked repetition priming. Journal
    of Cognitive Neuroscience, 18(10), 1631–1643.
    Hoshino, N., Midgley, K. J., Holcomb, P. J., & Grainger, J. (2010). An ERP
    investigation of masked cross-script translation priming. Brain Research, 1344(C),
    159–172.
    Hsu, C. H., Tsai, J. L., Lee, C. Y., & Tzeng, O. J. L. (2009). Orthographic
    combinability and phonological consistency effects in reading Chinese
    phonograms: An event-related potential study. Brain and Language, 108, 55-66.
    Kutas, M. (1993). In the company of other words: Electrophysiological evidence for
    single-word and sentence context effects. Language and Cognitive Processes,
    8(4), 533–572.
    Kutas, M., & Hillyard, S. (1980). Reading senseless sentences: brain potentials reflect
    semantic incongruity. Science, 207(4427), 203–205.
    Kutas, M., & Hillyard, S. A. (1983). Event-related brain potentials to grammatical
    errors and semantic anomalies. Memory & Cognition, 11(5), 539–550.
    Kutas, M., Neville, H. J., & Holcomb, P. J. (1987). A preliminary comparison of the
    N400 response to semantic anomalies during reading, listening and signing.
    Electroencephalogr Clin Neurophysiol Suppl, 39, 325–330.
    Kong, L., Zhang, J. X., Kang, C., Du, Y., Zhang, B., & Wang, S. (2010). P200 and
    phonological processing in Chinese word recognition. Neuroscience letters,
    473 (1), 37-41.
    127
    Lee, C. Y., Tsai, J. L., Chan, W. H., Hsu, C. H., Tzeng, O. J. L., & Hung, D. L.
    (2007). The temporal dynamics of the consistency effect in reading Chinese: An
    ERP study.Neuroreport, 18(2), 147-151.
    Luck, S.J. (2005). An Introduction to the Event-Related Potential Technique.
    Cambridge, Mass.: The MIT Press.
    Meuter, R. F. I., & Allport, A. (1999). Bilingual language switching in naming:
    Asymmetrical costs of language selection. Journal of Memory and Language,
    40(1), 25–40.
    Orfanidou, E., & Sumner, P. (2005). Language switching and the effects of
    orthographic specificity and response repetition. Memory & Cognition, 33(2),
    355–369.
    Petit, J. E. A. P., Midgley, K. J., Holcomb, P. J., & Grainger, J. (2006). On the time
    course of letter perception: A masked priming ERP investigation. Psychonomic
    Bulletin & Review, 13(4), 674–681.
    Soares, C., & Grosjean, F. (1984). Bilinguals in a monolingual and a bilingual speech
    mode: The effect on lexical access. Memory & Cognition, 12(4), 380–386.
    Thomas, M. S. C., & Allport, A. (2000). Language switching costs in bilingual visual
    word recognition. Journal of Memory and Language, 43(1), 44–66.
    van Heuven, W. J. B., Dijkstra, T., & Grainger, J. (1998). Orthographic neighborhood
    effects in bilingual word recognition. Journal of Memory and Language, 39(3),
    458–483.
    Vogel, E. K., & Luck, S. J. (2000). The visual N1 component as an index of a
    discrimination process. Psychophysiology, 37, 190-203.
    128
    Scotton, C. M., & Ury, W. (1977). Bilingual strategies: The social functions of
    code-switching. International Journal of the Sociology of Language, 13, 5–20.
    Mouton Publishers.

    QR CODE
    :::