| 研究生: |
陳威儒 Wei-Ru Chen |
|---|---|
| 論文名稱: |
氣膠光學及微物理反演法開發:以鹿林山大氣背景站應用為例 Development of aerosol optical and microphysical inversion: application at the Lulin atmospheric background station |
| 指導教授: |
王聖翔
Sheng-Hsuang Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 大氣科學學系 Department of Atmospheric Sciences |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 米氏散射理論 、氣膠光學與微物理參數 、鹿林山大氣背景站 |
| 外文關鍵詞: | Mie theory, Aerosol optical and microphysical properties, LABS |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氣膠可透過改變地球輻射收支系統影響全球氣候,NOAA (National Oceanic and Atmospheric Administration)為量化氣膠光學特性與氣膠輻射效應,建立氣膠聯合觀測網(NOAA Federated Aerosol Network , NFAN)監測全球氣膠光學長期變化,其中鹿林山大氣背景站(Lulin Atmospheric Background Station, LABS; {23.469}^\circle N, {120.874}^\circle E, \ 海拔2862公尺)為觀測網內亞洲主要觀測站之一,位於臺灣玉山國家公園內。NOAA氣膠觀測系統雖提供先進的氣膠光學參數,但不完整的氣膠微物理與化學成分觀測,對評估氣膠輻射效應仍是挑戰。因此,本研究將基於米氏散射理論的數值模型結合LABS氣膠觀測,建立一套反演法,嘗試計算出氣膠粒徑分布與複數折射率。
透過敏感度實驗,我們發現此反演法適用於雙峰粒徑分布條件,且歸納出反演相對有效範圍:氣膠細粒徑<300nm或粗粒徑<500nm,氣膠等效折射率實部(RRI)介於1.3至2.5間與等效折射率虛部(IRI)介於10-4至1之間。進一步針對真實環境檢驗此反演法之適用性,本研究選擇2020年4月及2021年3月兩個整月進行模擬,經觀測資料所建立的氣膠種類分類法可得知,此期間LABS受沙塵與生質燃燒氣膠傳輸的影響。執行本反演法的結果顯示,生質燃燒期間氣膠等效粒徑平均值約0.77\pm0.36\mu m與氣膠折射率平均值約1.82-i0.04 (1.62-i0.00至2.02-i0.08);沙塵期間氣膠等效粒徑平均值約1.47\pm0.63\mu m與氣膠折射率平均值約1.48-i0.01 (1.40-i0.00至1.68-i0.03),結果說明反演法可明確描述沙塵與生質燃燒氣膠變化,亦可呈現觀測期間氣膠粒徑增長之特性。反演結果與觀測比較,雖然此反演法的結果對於趨勢變化掌握良好(r>0.9),整體來看反演法對散射係數低估約12%、吸光係數低估約4%、質量濃度高估可達35%,且吸收係數與質量濃度的反演結果有較大不確定性。未來本反演法將可應用於不同儀器間的觀測閉合度檢驗,並有助於改善輻射傳遞模式所用的輸入資料完整性,精進氣膠輻射效應估算。
Aerosols can alter the earth's radiation budget and influence global climate change. To improve the understanding of aerosol optical properties (AOPs) and aerosol radiation effect (ARE), NOAA Federated Aerosol Network (NFAN) was established to monitor the mean values, spatiotemporal variability, and long-term trends of AOPs. Lulin Atmospheric Background Station (LABS, {23.469}^\circle N, {120.874}^\circle E, \ 2862\ a.m.s.l.), which is located on the top of Mt. Lulin in central Taiwan, is one of the NFAN major sites in Asia. Although the NOAA aerosol system provides the state of art AOPs measurements, the lack of aerosol microphysics and chemical components information still remains a challenge for the ARE calculations. Therefore, the current study aims to develop an inversion of aerosol optical and microphysical properties (i.e., aerosol size distribution and the aerosol refractive index (RI)) based on Mie theory and aerosol in-situ measurements at the LABS.
According to the sensitivity experiment, the inversion method appropriate for the case of bimodal aerosol size distribution. The generalizing effective coverage was the fine mode of aerosol diameter <300nm or the coarse mode diameter <500nm, the real part of the equivalent refractive index (RRI) around 1.3 to 2.5, and the image part of the equivalent refractive index (IRI) around 10-4 to 1. Further, we selected two full months of April 2020 and March 2021 for implementing the inversion. As the observational results suggested by an aerosol-type classification method, the LABS was affected by the long-range transported dust and biomass burning aerosols in these two months. Base on the LABS’s realistic inversion, the monthly mean of biomass burning AOPs was around 0.77\pm0.36\ \mu m for the aerosol equivalent diameter and around 1.82-i0.04 (1.62-i0.00 to 2.02-i0.08) for the aerosol refractive index in March 2021; The mean of dust AOPs was about 1.47\pm0.63\mu m for the equivalent diameter and around 1.48-i0.01 (1.40-i0.00 to 1.68-i0.03) for the aerosol refractive index in April 2020. The above results illustrate that the inversion method can well represent the variation of dust and biomass burning aerosol properties, and the growth of the aerosol diameter. Compared to the measurements of the results, it shows a good correlation (r>0.9), but underestimates the scattering coefficient of 12%, underestimates the absorption coefficient of 4%, and overestimates the mass concentration of 35%. A larger uncertainty (i.e., root-mean-square error) was shown for the absorption coefficient and mass concentration. In the future, our inversion could apply to the observation closure between different instruments, and help to intensify the integrity of the input data in the radiation transfer model, which can improve the ARE simulation.
王聖翔 (2007), 亞州生質燃燒氣膠對對區域區域環境環境與大氣輻射大氣輻射衝擊及對氣象場的反饋作用, 國立中央大學, 大氣物理研究所.
加拿大英屬哥倫比亞大學氣膠實驗室。摘自http://www.aerosol.mech.ubc.ca/research/soot-and-nanoparticles/
林正直 (2017). 春季大氣環流對東南亞氣膠傳輸之影響. 大氣科學學系, 國立中央大學.
林能暉,蔡錫祺,王家麟,李崇德,許桂榮,彭啟明,王聖翔 (2012), 鹿林山背景測站科技研究及操作維護期末報告, 行政院環境保護署.
林能暉,蔡錫祺,王家麟,李崇德,許桂榮,王聖翔,蕭大智,歐陽長風,張學銘 (2020), 鹿林山背景測站科技研究及操作維護計畫專案工作計書, 行政院環境保護署.
黃翔昱(2020), 中南半島生質燃燒氣膠傳送動力機制及區域氣候反饋, 大氣科學學系, 國立中央大學.
Andela, N., Morton, D. C., Giglio, L., Paugam, R., Chen, Y., Hantson, S., van der Werf, G. R., and Randerson, J. T.: The Global Fire Atlas of individual fire size, duration, speed and direction, Earth Syst. Sci. Data, 11, 529-552, 10.5194/essd-11-529-2019, 2019.
Anderson, T. L., Covert, D. S., Marshall, S. F., Laucks, M. L., Charlson, R. J., Waggoner, A. P., Ogren, J. A., Caldow, R., Holm, R. L., Quant, F. R., Sem, G. J., Wiedensohler, A., Ahlquist, N. A., and Bates, T. S.: Performance Characteristics of a High-Sensitivity, Three-Wavelength, Total Scatter/Backscatter Nephelometer, Journal of Atmospheric and Oceanic Technology, 13, 967-986, 10.1175/1520-0426(1996)013<0967:Pcoahs>2.0.Co;2, 1996.
Bohren, C. F. and Huffman, D. R.: Absorption and scattering of light by small particles, Wiley, New York1983.
Bond, T. C. and Bergstrom, R. W.: Light Absorption by Carbonaceous Particles: An Investigative Review, Aerosol Science and Technology, 40, 27-67, 10.1080/02786820500421521, 2006.
Chang, H. and Charalampopoulos, T.: Determination of the Wavelength Dependence of Refractive Indices of Flame Soot, Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences, 430, 577-591, 10.1098/rspa.1990.0107, 1990.
Chen, S.-C., Hsu, S.-C., Tsai, C.-J., Chou, C. C. K., Lin, N.-H., Lee, C.-T., Roam, G.-D., and Pui, D. Y. H.: Dynamic variations of ultrafine, fine and coarse particles at the Lu-Lin background site in East Asia, Atmospheric Environment, 78, 154-162, https://doi.org/10.1016/j.atmosenv.2012.05.029, 2013.
Chen, Y. C., Wang, S. H., Min, Q., Lu, S., Lin, P. L., Lin, N. H., Chung, K. S., and Joseph, E.: Aerosol impacts on warm-cloud microphysics and drizzle in a moderately polluted environment, Atmos. Chem. Phys., 21, 4487-4502, 10.5194/acp-21-4487-2021, 2021.
Cho, C., Kim, S.-W., Lee, M., Lim, S., Fang, W., Gustafsson, Ö., Andersson, A., Park, R. J., and Sheridan, P. J.: Observation-based estimates of the mass absorption cross-section of black and brown carbon and their contribution to aerosol light absorption in East Asia, Atmospheric Environment, 212, 65-74, https://doi.org/10.1016/j.atmosenv.2019.05.024, 2019.
Chylek, P., Lee, J. E., Romonosky, D. E., Gallo, F., Lou, S., Shrivastava, M., Carrico, C. M., Aiken, A. C., and Dubey, M. K.: Mie Scattering Captures Observed Optical Properties of Ambient Biomass Burning Plumes Assuming Uniform Black, Brown, and Organic Carbon Mixtures, Journal of Geophysical Research: Atmospheres, 124, 11406-11427, https://doi.org/10.1029/2019JD031224, 2019.
Dubovik, O. and King, M. D.: A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements, Journal of Geophysical Research: Atmospheres, 105, 20673-20696, https://doi.org/10.1029/2000JD900282, 2000.
Dubovik, O., Smirnov, A., Holben, B. N., King, M. D., Kaufman, Y. J., Eck, T. F., and Slutsker, I.: Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements, Journal of Geophysical Research: Atmospheres, 105, 9791-9806, https://doi.org/10.1029/2000JD900040, 2000.
Dubovik, O., Holben, B., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M. D., Tanré, D., and Slutsker, I.: Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations, Journal of the Atmospheric Sciences, 59, 590-608, 10.1175/1520-0469(2002)059<0590:Voaaop>2.0.Co;2, 2002.
Dubovik, O., Herman, M., Holdak, A., Lapyonok, T., Tanré, D., Deuzé, J. L., Ducos, F., Sinyuk, A., and Lopatin, A.: Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations, Atmos. Meas. Tech., 4, 975-1018, 10.5194/amt-4-975-2011, 2011.
Eck, T., Holben, b., Reid, J., Dubovik, O., Smirnov, A., Neill, Slutsker, I., and Kinne, S.: Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols, J. Geophys. Res., 104349, 333-331, 10.1029/1999JD900923, 1999.
Esteve, A. R., Highwood, E. J., Morgan, W. T., Allen, G., Coe, H., Grainger, R. G., Brown, P., and Szpek, K.: A study on the sensitivities of simulated aerosol optical properties to composition and size distribution using airborne measurements, Atmospheric Environment, 89, 517-524, https://doi.org/10.1016/j.atmosenv.2014.02.063, 2014.
Eyre, J.: Inversion methods for satellite sounding data, 2002.
Fan, J., Shao, L., Hu, Y., Wang, J., Wang, J., and Ma, J.: Classification and chemical compositions of individual particles at an eastern marginal site of Tibetan Plateau, Atmospheric Pollution Research, 7, 833-842, https://doi.org/10.1016/j.apr.2016.04.007, 2016.
Furuuchi, M., Fissan, H., and Horodecki, J.: Evaporation behavior of volatile particles on fibrous filter flushed with particle-free dry air, Powder Technology, 118, 171-179, 10.1016/S0032-5910(01)00308-4, 2001.
Giles, D. M., Holben, B. N., Eck, T. F., Sinyuk, A., Smirnov, A., Slutsker, I., Dickerson, R. R., Thompson, A. M., and Schafer, J. S.: An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions, Journal of Geophysical Research: Atmospheres, 117, https://doi.org/10.1029/2012JD018127, 2012.
Gliß, J., Mortier, A., Schulz, M., Andrews, E., Balkanski, Y., Bauer, S. E., Benedictow, A. M. K., Bian, H., Checa-Garcia, R., Chin, M., Ginoux, P., Griesfeller, J. J., Heckel, A., Kipling, Z., Kirkevåg, A., Kokkola, H., Laj, P., Le Sager, P., Lund, M. T., Lund Myhre, C., Matsui, H., Myhre, G., Neubauer, D., van Noije, T., North, P., Olivié, D. J. L., Rémy, S., Sogacheva, L., Takemura, T., Tsigaridis, K., and Tsyro, S. G.: AeroCom phase III multi-model evaluation of the aerosol life cycle and optical properties using ground- and space-based remote sensing as well as surface in situ observations, Atmos. Chem. Phys., 21, 87-128, 10.5194/acp-21-87-2021, 2021.
Grieshop, A. P., Logue, J. M., Donahue, N. M., and Robinson, A. L.: Laboratory investigation of photochemical oxidation of organic aerosol from wood fires 1: measurement and simulation of organic aerosol evolution, Atmos. Chem. Phys., 9, 1263-1277, 10.5194/acp-9-1263-2009, 2009.
Hale, G. M. and Querry, M. R.: Optical Constants of Water in the 200-nm to 200-μm Wavelength Region, Appl. Opt., 12, 555-563, 10.1364/AO.12.000555, 1973.
Helin, A., Virkkula, A., Backman, J., Pirjola, L., Sippula, O., Aakko-Saksa, P., Väätäinen, S., Mylläri, F., Järvinen, A., Bloss, M., Aurela, M., Jakobi, G., Karjalainen, P., Zimmermann, R., Jokiniemi, J., Saarikoski, S., Tissari, J., Rönkkö, T., Niemi, J. V., and Timonen, H.: Variation of Absorption Ångström Exponent in Aerosols From Different Emission Sources, Journal of Geophysical Research: Atmospheres, 126, e2020JD034094, https://doi.org/10.1029/2020JD034094, 2021.
Hess, M., Koepke, P., and Schult, I.: Optical Properties of Aerosols and Clouds: The Software Package OPAC, Bulletin of the American Meteorological Society, 79, 831, 10.1175/1520-0477(1998)079<0831:Opoaac>2.0.Co;2, 1998.
Hewison, T. J.: 1D-VAR Retrieval of Temperature and Humidity Profiles From a Ground-Based Microwave Radiometer, IEEE Transactions on Geoscience and Remote Sensing, 45, 2163-2168, 10.1109/TGRS.2007.898091, 2007.
Hitzenberger, R., Jennings, S. G., Larson, S. M., Dillner, A., Cachier, H., Galambos, Z., Rouc, A., and Spain, T. G.: Intercomparison of measurement methods for black carbon aerosols, Atmospheric Environment, 33, 2823-2833, https://doi.org/10.1016/S1352-2310(98)00360-4, 1999.
Hsiao, T.-C., Chen, W.-N., Ye, W.-C., Lin, N.-H., Tsay, S.-C., Lin, T.-H., Lee, C.-T., Chuang, M.-T., Pantina, P., and Wang, S.-H.: Aerosol optical properties at the Lulin Atmospheric Background Station in Taiwan and the influences of long-range transport of air pollutants, Atmospheric Environment, 150, 366-378, https://doi.org/10.1016/j.atmosenv.2016.11.031, 2017.
Hsu, C.-H. and Cheng, F.-Y.: Synoptic Weather Patterns and Associated Air Pollution in Taiwan, Aerosol and Air Quality Research, 19, 1139-1151, 10.4209/aaqr.2018.09.0348, 2019.
IPCC, Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. (Eds.): Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp., 10.1017/CBO9781107415324, 2013.
Jarzembski, M. A., Norman, M. L., Fuller, K. A., Srivastava, V., and Cutten, D. R.: Complex refractive index of ammonium nitrate in the 2–20-μm spectral range, Appl. Opt., 42, 922-930, 10.1364/AO.42.000922, 2003.
Jeong, U., Tsay, S.-C., Giles, D. M., Holben, B. N., Swap, R. J., Abuhassan, N., and Herman, J. R.: The SMART-s Trace Gas and Aerosol Inversions: I. Algorithm Theoretical Basis for Column Property Retrievals, Journal of Geophysical Research: Atmospheres, 125, e2019JD032088, https://doi.org/10.1029/2019JD032088, 2020.
Jeong, U., Kim, J., Ahn, C., Torres, O., Liu, X., Bhartia, P. K., Spurr, R. J. D., Haffner, D., Chance, K., and Holben, B. N.: An optimal-estimation-based aerosol retrieval algorithm using OMI near-UV observations, Atmos. Chem. Phys., 16, 177-193, 10.5194/acp-16-177-2016, 2016.
Jiang, B., Xia, D., and Zhang, X.: A multicomponent kinetic model established for investigation on atmospheric new particle formation mechanism in H 2 SO 4 -HNO 3 -NH 3 -VOC system, Science of The Total Environment, 616-617, 10.1016/j.scitotenv.2017.10.174, 2017.
Lee, S.-H., Gordon, H., Yu, H., Lehtipalo, K., Haley, R., Li, Y., and Zhang, R.: New Particle Formation in the Atmosphere: From Molecular Clusters to Global Climate, Journal of Geophysical Research: Atmospheres, 124, 7098-7146, https://doi.org/10.1029/2018JD029356, 2019.
Lee, C.-T., Chuang, M.-T., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, S.-C., Wang, S.-H., Huang, H., Chen, H.-W., Liu, Y.-L., Weng, G.-H., Lai, H.-Y., and Hsu, S.-P.: The enhancement of PM2.5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan, Atmospheric Environment, 45, 5784-5794, https://doi.org/10.1016/j.atmosenv.2011.07.020, 2011.
Levenberg, K.: A METHOD FOR THE SOLUTION OF CERTAIN NON-LINEAR PROBLEMS IN LEAST SQUARES, Quarterly of Applied Mathematics, 2, 164-168, 1944.
Levin, E. J. T., McMeeking, G. R., Carrico, C. M., Mack, L. E., Kreidenweis, S. M., Wold, C. E., Moosmüller, H., Arnott, W. P., Hao, W. M., Collett Jr., J. L., and Malm, W. C.: Biomass burning smoke aerosol properties measured during Fire Laboratory at Missoula Experiments (FLAME), Journal of Geophysical Research: Atmospheres, 115, https://doi.org/10.1029/2009JD013601, 2010.
Liou, K.-N.: An introduction to atmospheric radiation [electronic resource] / K.N. Liou, 2nd ed., International geophysics series ; v. 84, Academic Press, Amsterdam ;2002.
Liu, C., Chung, C. E., Yin, Y., and Schnaiter, M.: The absorption Ångström exponent of black carbon: from numerical aspects, Atmos. Chem. Phys., 18, 6259-6273, 10.5194/acp-18-6259-2018, 2018.
Liu, D., He, C., Schwarz, J. P., and Wang, X.: Lifecycle of light-absorbing carbonaceous aerosols in the atmosphere, npj Climate and Atmospheric Science, 3, 40, 10.1038/s41612-020-00145-8, 2020.
Liu, C., Li, J., Yin, Y., Zhu, B., and Feng, Q.: Optical properties of black carbon aggregates with non-absorptive coating, Journal of Quantitative Spectroscopy and Radiative Transfer, 187, 443-452, https://doi.org/10.1016/j.jqsrt.2016.10.023, 2017.
Mishchenko, M. I., Travis, L. D., and Mackowski, D. W.: T-matrix computations of light scattering by nonspherical particles: A review, Journal of Quantitative Spectroscopy and Radiative Transfer, 55, 535-575, https://doi.org/10.1016/0022-4073(96)00002-7, 1996.
Müller, D., Wandinger, U., and Ansmann, A.: Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory, Appl. Opt., 38, 2346-2357, 10.1364/AO.38.002346, 1999.
Müller, T., Henzing, J. S., de Leeuw, G., Wiedensohler, A., Alastuey, A., Angelov, H., Bizjak, M., Collaud Coen, M., Engström, J. E., Gruening, C., Hillamo, R., Hoffer, A., Imre, K., Ivanow, P., Jennings, G., Sun, J. Y., Kalivitis, N., Karlsson, H., Komppula, M., Laj, P., Li, S. M., Lunder, C., Marinoni, A., Martins dos Santos, S., Moerman, M., Nowak, A., Ogren, J. A., Petzold, A., Pichon, J. M., Rodriquez, S., Sharma, S., Sheridan, P. J., Teinilä, K., Tuch, T., Viana, M., Virkkula, A., Weingartner, E., Wilhelm, R., and Wang, Y. Q.: Characterization and intercomparison of aerosol absorption photometers: result of two intercomparison workshops, Atmos. Meas. Tech., 4, 245-268, 10.5194/amt-4-245-2011, 2011.
Nguyen, L. S. P., Sheu, G.-R., Chang, S.-C., and Lin, N.-H.: Effects of temperature and relative humidity on the partitioning of atmospheric oxidized mercury at a high-altitude mountain background site in Taiwan, Atmospheric Environment, 261, 118572, https://doi.org/10.1016/j.atmosenv.2021.118572, 2021.
Poudel, S., Fiddler, M., Smith, D., Flurchick, K., and Bililign, S.: Optical Properties of Biomass Burning Aerosols: Comparison of Experimental Measurements and T-Matrix Calculations, Atmosphere, 8, 228, 10.3390/atmos8110228, 2017.
Qi, H.: Inversion of particle size distribution by spectral extinction technique using the attractive and repulsive particle swarm optimization algorithm, Thermal Science, 19, 10.2298/TSCI140319103Q, 2014.
Remer, L. A., Kleidman, R. G., Levy, R. C., Kaufman, Y. J., Tanré, D., Mattoo, S., Martins, J. V., Ichoku, C., Koren, I., Yu, H., and Holben, B. N.: Global aerosol climatology from the MODIS satellite sensors, Journal of Geophysical Research: Atmospheres, 113, https://doi.org/10.1029/2007JD009661, 2008.
Rodgers, C. D.: Inverse Methods for Atmospheric Sounding, Inverse Methods for Atmospheric Sounding, 10.1142/3171,
Rodgers, C. D.: Inverse Methods for Atmospheric Sounding: Theory and Practice, World Scientific2000.
Saathoff, H., Naumann, K. H., Schnaiter, M., Schöck, W., Möhler, O., Schurath, U., Weingartner, E., Gysel, M., and Baltensperger, U.: Coating of soot and (NH4)2SO4 particles by ozonolysis products of α-pinene, Journal of Aerosol Science, 34, 1297-1321, https://doi.org/10.1016/S0021-8502(03)00364-1, 2003.
Sarpong, E., Smith, D., Pokhrel, R., Fiddler, M. N., and Bililign, S.: Refractive Indices of Biomass Burning Aerosols Obtained from African Biomass Fuels Using RDG Approximation, Atmosphere, 11, 62, 2020.
Schmeisser, L., Andrews, E., Ogren, J. A., Sheridan, P., Jefferson, A., Sharma, S., Kim, J. E., Sherman, J. P., Sorribas, M., Kalapov, I., Arsov, T., Angelov, C., Mayol-Bracero, O. L., Labuschagne, C., Kim, S. W., Hoffer, A., Lin, N. H., Chia, H. P., Bergin, M., Sun, J., Liu, P., and Wu, H.: Classifying aerosol type using in situ surface spectral aerosol optical properties, Atmos. Chem. Phys., 17, 12097-12120, 10.5194/acp-17-12097-2017, 2017.
Schuster, G. L., Dubovik, O., and Holben, B. N.: Angstrom exponent and bimodal aerosol size distributions, Journal of Geophysical Research: Atmospheres, 111, https://doi.org/10.1029/2005JD006328, 2006.
Sheu, G.-R., Lin, N.-H., Wang, J.-L., and Lee, C.-T.: Lulin Atmospheric Background Station: A New High-Elevation Baseline Station in Taiwan, Earozoru Kenkyu, 24, 84-89, 10.11203/jar.24.84, 2009.
Sinyuk, A., Holben, B. N., Eck, T. F., Giles, D. M., Slutsker, I., Korkin, S., Schafer, J. S., Smirnov, A., Sorokin, M., and Lyapustin, A.: The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2, Atmos. Meas. Tech., 13, 3375-3411, 10.5194/amt-13-3375-2020, 2020.
Spindler, C., Riziq, A. A., and Rudich, Y.: Retrieval of Aerosol Complex Refractive Index by Combining Cavity Ring Down Aerosol Spectrometer Measurements with Full Size Distribution Information, Aerosol Science and Technology, 41, 1011-1017, 10.1080/02786820701682087, 2007.
Stamnes, K., Tsay, S. C., Wiscombe, W., and Jayaweera, K.: Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media, Appl. Opt., 27, 2502-2509, 10.1364/AO.27.002502, 1988.
Stuke, S.: Characterizing thin clouds using aerosol optical depth information, 2016.
Sumlin, B. J., Heinson, W. R., and Chakrabarty, R. K.: Retrieving the aerosol complex refractive index using PyMieScatt: A Mie computational package with visualization capabilities, Journal of Quantitative Spectroscopy and Radiative Transfer, 205, 127-134, https://doi.org/10.1016/j.jqsrt.2017.10.012, 2018.
Trenberth, K. E. and Fasullo, J. T.: Global warming due to increasing absorbed solar radiation, Geophysical Research Letters, 36, https://doi.org/10.1029/2009GL037527, 2009.
Valenzuela, A., Reid, J. P., Bzdek, B. R., and Orr-Ewing, A. J.: Accuracy Required in Measurements of Refractive Index and Hygroscopic Response to Reduce Uncertainties in Estimates of Aerosol Radiative Forcing Efficiency, Journal of Geophysical Research: Atmospheres, 123, 6469-6486, https://doi.org/10.1029/2018JD028365, 2018.
Veselovskii, I., Kolgotin, A., Griaznov, V., Müller, D., Wandinger, U., and Whiteman, D. N.: Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding, Appl. Opt., 41, 3685-3699, 10.1364/AO.41.003685, 2002.
Wang, J., McNeill, V. F., Collins, D. R., and Flagan, R. C.: Fast Mixing Condensation Nucleus Counter: Application to Rapid Scanning Differential Mobility Analyzer Measurements, Aerosol Science and Technology, 36, 678-689, 10.1080/02786820290038366, 2002.
Womack, C. C., Manfred, K. M., Wagner, N. L., Adler, G., Franchin, A., Lamb, K. D., Middlebrook, A. M., Schwarz, J. P., Brock, C. A., Brown, S. S., and Washenfelder, R. A.: Complex refractive indices in the ultraviolet and visible spectral region for highly absorbing non-spherical biomass burning aerosol, Atmos. Chem. Phys., 21, 7235-7252, 10.5194/acp-21-7235-2021, 2021.
Wu, Y., Cheng, T., Liu, D., Allan, J. D., Zheng, L., and Chen, H.: Light Absorption Enhancement of Black Carbon Aerosol Constrained by Particle Morphology, Environmental Science & Technology, 52, 6912-6919, 10.1021/acs.est.8b00636, 2018.
Zaveri:Examining the Morphology of Black Carbon Particles。2014年1月31,摘自 https://asr.science.energy.gov/news/program-news/post/5279