| 研究生: |
程子玹 Tzu-Hsuan Cheng |
|---|---|
| 論文名稱: |
鍺 量 子 點 之 拉 曼 光 譜 分 析 Raman scattering of self-organized Ge quantum dot |
| 指導教授: |
徐子民
Tzu-Min Hsu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 鍺量子點 、拉曼 、應力 、非諧和效應 、生命期 |
| 外文關鍵詞: | quantum dot, Raman, strain, anharmonic effect, lifetime |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文藉由拉曼散射(Raman scattering)量測系統來分析不同直徑的鍺量子點(Quantum dot)樣品之聲子特性與結晶品質等晶格資訊。由室溫拉曼光譜結果可知,當鍺從塊材變為奈米結構下的量子點後,聲子訊號峰值頻率隨直徑變小而有增加的趨勢。先前的研究中指出量子侷限效應(Quantum confinement effect)與應力作用(Strain effect)皆會對塊材與量子點間的相對頻率偏移量造成貢獻。進一步利用此頻率偏移量來分析鍺量子點所受到的應力,並比較兩種不同結構之樣品來觀察其應力來源。進行變溫拉曼量測,可由光學聲子訊號的峰值頻率與半高寬隨溫度的變化關係擬合出非諧和作用所造成的影響。從鍺塊材與量子點的本質頻率差值來探討量子點所受應力,其結果與室溫下所觀察到的相同;而比較非諧和係數後,可以發現量子點確實有受到侷限作用,雖然在聲子頻率沒有很大的變化,但在非諧和振盪作用卻有明顯的貢獻。利用拉曼訊號半高寬可以推算出光學聲子(Opitcal phonon)生命期,其分為本質生命期與衰變生命期。本質生命期可以反應出樣品結晶的好壞,在低溫時本質生命期為總生命期的主要貢獻;隨著溫度的升高,衰變生命期與本質生命期已經相當接近,因此非諧和振盪也會影響總生命期,而使高溫時的光學聲子總生命期較短。
By applying Raman spectroscopy, we have analyzed the phonon properties and crystal structure of different diameters of Ge quantum dot. When the germanium bulk transformed into quantum dot, we can observe that the Raman peak frequency increases as the diameter decreases via the Raman spectra. The reference indicates that the Ge-Ge mode frequency of Ge nanocrystals can be changed by quantum confinement and strain effect. And, Strain tensor in the Ge quantum dots can be further calculated by the Raman shift, and by comparing the different structures of the two samples, their strain sources would be found.The Raman spectra from various sizes of Ge quantum dot shows changes in peak position and linewidth with temperature. These temperature-dependent changes can attribute to the anharmoicity in the vibrational potential. Whether we calculcated the strain tensor from the Raman shift at 300K or intrinsic frequency, we can get the same result. Compared with the anharmonic coefficients, we find that Ge quantum dots were indeed influenced by quantum confinement effect. Quantum confinement effect plays a role in anharmonic oscillations, even though there is no significant change in the phonon frequency.The lifetime of the phonons can be obtained through the result from the temperature-dependent Raman peak, which is divided into the intrinsic lifetime and the decay lifetime. The former lifetime corresponds to the crystal quality, and it is the main contribution to the lifetime of the phonons at low temperature. The latter lifetime will be close to the value of the former lifetime with the rising temperature. Therefore, we conclude that as the temperature rises, the anharmonic effect would be raised.
[1] T. Takagahara and K. Takeda, “Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials”, Phys. Rev. B, Vol. 46, pp. 15578-15581,
December 1992.
[2] L. Zhuang et al., “Silicon single-electron quantum-dottransistor switch operating at room temperature”, Phys. Rev. Lett., Vol. 72, pp. 1205-1207, August 1998.
[3] M. E. Rubin et al., “Imaging and spectroscopy of single InAs self-assembled quantumdots using ballistic electron emission microscopy”, Phys. Rev. Lett., Vol. 77, pp. 5268, September 1996.
[4] G. L. Chen et al., “Tunneling spectroscopy of germanium quantum-dot in single-hole transistors with self-aligned electrodes”, Nanotechnology, Vol. 18, pp. 475402, October
2007.
[5] S. S. Tseng et al., “Photoresponses in poly-Si phototransistors incorporating germanium quantum dots in the gate dielectrics”, Appl. Phys. Lett., Vol. 93, pp. 191112, August 2008.
[6] M. A. Green, “Third generation photovoltaics-solar cells for 2020 and beyond”, Physica E, Vol. 14, pp. 65, April 2002.
[7] B. Yang et al., “Measurements of anisotropic thermoelectric properties in superlattices”, Appl. Phys. Lett., Vol. 81, pp. 3588, October 2002.
[8] C. V. Raman and K. S. Krishnan “A new type of secondary radiation”, Nature, Vol. 121, pp. 501, March 1928.
[9] A. B. Talochkin and V. A. Markov, “Raman resonance in the strained Ge quantum dot array”, Nanotechnology, Vol. 19, pp. 275402, May 2008.
[10] Z. Sui et al., “Raman analysis of Si/Ge strained‐layer superlattices under hydrostatic pressure”, Appl. Phys. Lett., Vol. 58, pp. 2351-2353, May 1991.
[11] P. G. Klemens, “Anharmonic decay of optical phonons”, Phys. Rev., Vol. 148, pp. 845, August 1966.
[12] M. Balkanski et al., “Anharmonic effects in light scattering due to optical phonons in silicon”, Phys. Rev. B, Vol. 128, pp. 1928, August 1983.
[13] M. H. Kuo et al., “Designer Ge quantum dots on Si: A heterostructure configuration with enhanced optoelectronic performance”, Appl. Phys. Lett., Vol. 101, pp. 223107, 2012
[14] J. L. Liu et al., “Optical phonons in self-assembled Ge quantum dot superlattices: Strain relaxation effects”, J. Appl. Phys., Vol. 92, pp. 6804, December 2002.
[15] J. L. Liu et al., “Optical and acoustic phonon modes in self-organized Ge quantum dot superlattices”, Appl. Phys. Lett., Vol. 76, pp. 586-588, January 2000.
[16] B. N. Brockhouse and P. K. Iyengar, “Normal Modes of Germanium by Neutron Spectrometry”, Phys. Rev., Vol. 111, pp. 747, August 1958.
[17] Y. Jie et al., “Phonon confinement in Ge nanocrystals in silicon oxide matrix”, J. Appl. Phys.,Vol. 109, pp. 033107, February 2011.
[18] E. Kasper et al., “Symmetrically strained Si/Ge superlattices on Si substrates”, Phys. Rev. B, Vol.38, pp. 3599, August 1988.
[19] S.M. Sze [ Physics of Semiconductor Devices (John Wiley and Sons, Inc, New York, 1981)]
[20] Jacob Philip and M. A. Breazeale, “Third‐order elastic constants and Grüneisen parameters of silicon and germanium between 3 and 300 °K”, J. Appl. Phys.,Vol.54,
pp.752, September 1983