| 研究生: |
邱義宏 Yi-Hong Qiu |
|---|---|
| 論文名稱: |
五層樓淺基礎建築物受震液化反應-離心模型試驗 nono |
| 指導教授: | 黃俊鴻 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 226 |
| 中文關鍵詞: | 淺基礎 、土壤液化 、離心模型 、沉陷量 |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣位於環太平洋火山地震帶,土壤液化經常伴隨地震而發生。於921大地震時,受到液化引致基礎沉陷與承載力破壞是淺基礎損壞的主要原因。本研究設計五層樓高(16m)之建築物模型,搭配四種不同形式基礎,包括大獨立基腳基礎、小獨立基腳基礎、筏式基礎與地下室基礎,利用中央大學地工離心機與震動台於65g重力場環境進行離心模型試驗,砂土試體中不同深度埋置加速度計、孔隙水壓計、線性差動變壓器(LVDT)、雷射位移計及土壓力計,分別量測地層各物理性質之動態歷時反應,探討淺基礎建築物於液化地盤上受震反應。
研究結果顯示,當土壤未達液化時,地盤加速度有放大趨勢,隨著建築物越高加速度放大效應越明顯;但當土壤達液化狀態時,液化土層能有效阻隔震波向上傳遞,對於建築物有明顯地減震效應;施加震動強度越大,液化土層深度越深,超額孔隙水壓消散所需時間也越長久;在自由土層中,大部分沉陷主要由震動期間而發生;建築物沉陷由震動過程土壤受剪力作用而引致變形與超額孔隙水壓消散後土壤再壓密;基礎版之總應力歷時發現於受震初期,基礎版一端受壓時另一端受拉,底版總應力隨著建築物沉陷而持續累加。
A series of centrifuge tests were performance to investigate the settlement and seismic behavior of building on liquefiable ground with different types of foundation. The test were carried out by using NCU centrifuge and shaking table under 65g centrifuge acceleration field with liminar container. During the test, accelerometers, pore pressure transducers, linear variable differential transformers (LVDT) and laser displacement sensor were embedded in the soil layer to monitor the seismic response of soil deposit. The centrifuge experiments were conducted to evaluate the liquefaction-induced and post-liquefaction settlement of shallow foundations.
According to the test results, the following conclusions are made : When the soil does not liquefy, the acceleration is amplified significantly from the base of soil stratum to the top of structure. In liquefiable ground, liquefied layer will isolate the vibration that propagate to the buildings. The liquefied depth of sand layer increases with the increasing of input. In the free-field ground, most of the settlement occurred due to volumetric-induced deformations; In contrast, foundation settlement occurred due to shear-induced deformations and excess pore water pressure dissipate.
1.中華民國大地工程學會,建築物基礎構造設計規範,中華民國大地工程學會(2001)。
2.中華民國內政部營建署,建築技術規則,中華民國內政部營建署 (2008)。
3.王崇儒,「利用彎曲元件探查離心砂土模型剪力波波速剖面及其工程上的應用」,碩士論文,國立中央大學土木工程學系,桃園,台灣 (2010)。
4.邱吉爾,「以動態離心模型試驗模擬液化地盤淺基礎建築物之受震反應」,碩士論文,國立中央大學土木工程學系,桃園,台灣 (2012)。
5.邱笙輔,「以動態離心模型試驗模擬淺基礎於層狀液化地盤之受震反應」,碩士論文,國立中央大學土木工程學系,桃園,台灣 (2018)。
6. 郭玉潔,「探討積層版試驗箱進行離心模型試驗之邊界效應」,碩士論文,國立中央大學土木工程學系,桃園,台灣 (2009)。
7. 黃富國、余明山、何政弘,「九二一集集大地震土壤液化震駭與問題探討」,土木工程技術期刊,第三卷,第3期,第49~79頁,台灣 (1999)。
8.鄭文隆,吳偉康,「土壤液化之災害型態與現地研判」,地工技術,第9期,第90-103頁 (1985)。
9.蔡晨暉,「以離心模型試驗模擬沉箱式碼頭之受震行為」,碩士論文,國立中央大學土木工程學系,中壢(2010)。
10.鄺柏軒,「利用動態離心模型試驗模擬砂土層之剪應力與剪應變關係」,碩士論文,國立中央大學土木工程學系,桃園,台灣(2010)。
11.Adachi, T., Iwai, S., Yasui, M., and Sato, Y., “Settlement and inclination of reinforced concrete buildings in Dagupan City due to liquefaction during the 1990 Philippine earthquake.” Proc., 10th World Conf. on Earthquake Engineering, International Association for Earthquake Engineering (IAEE), Madrid, Spain, 147–152 (1992).
12.Adalier, K., Elgamal, A.W., and Martin, G.R., “Foundation liquefaction countermeasures for earth embankment,” Geotechnical and Geoenvironmental Engineering, Vol. 124, No. 6, pp. 500-517 (1998).
13.Bartlett, S.F., and Youd, T.L.,“Empirical prediction of liquefaction-induced lateral spread,”Geotechnical Engineering, Vol.121, No.4, pp. 316-329 (1995).
14.Committee on Soil Dynamics of the Geotechnical Engineering Division. “Definition of terms related to liquefaction,”ASCE, Vol.104, No.9, pp. 1197-1200 (1978).
15.Deng, L., and Kutter, B.L., “Characterization of rocking shallow foundations using centrifuge model tests,”Earthquake Engineering and Structure Dynamic, Vol.41, pp. 1043-1060 (2011).
16.Dashti, S., Bray, J.D., Pestana, J.M., Riemer, M., and Wilson, D., “Centrifuge experimentation of building performance on liquefied ground,”Geotechnical Earthquake Engineering and Soil Dynamic IV (2008).
17.Dashti, S., Bray, J.D., Pestana, J.M., Riemer, M., and Wilson, D., “Centrifuge testing to evaluate and mitigate liquefaction-induced building settlement mechanisms ,”Geotechnical Engineering, Vol.136, No.7, pp. 918-929 (2010).
18.Dashti, S., Bray, J.D., Pestana, J.M., Riemer, M., and Wilson, D., “Mechanisms of seismically induced settlement of buildings with shallow foundation on liquefiable soil ,”Geotechnical Engineering, Vol.136, No.1, pp. 151-164 (2010).
19.Elizabeth, A., and Sitar, N.,“Performance of improve ground,”The Pacific Earthquake Engineering Research Center, Annual Meeting Research Digest (2002)
20.Gajan, S., and Kutter, B.L., “Contact interface model for shallow foundations subjected to combined cyclic loading,”Geotechnical Engineering, Vol.135, No.3, pp. 407-419 (2009).
21.Gajan, S., Kutter, B.L., Phaln, J.D., Hutchinson, T.C., and Martin, G.R.“Centrifuge modeling of load-deformation behavior of rocking shallow foundation,”Soil Dynamic and Earthquake, Vol.25, pp. 773-783 (2005).
22.Ishihara, K.,“Stability of natural deposits during earthquake,”Processings. of 11th International Conference on Soil Mechanics and Foundation Engineering., San Francisco, Vol.1, pp. 321-376 (1985).
23.Knappett, J.A., Haigh, S.K., and Madabhushi S.P.G.,“Mechanisms of failure for shallow foundation under earthquake loading,”Soil Dynamic and Earthquake, Vol.26, pp. 91-102 (2006).
24.Liu, L., and Dobry, R., “Seicmic response of shallow foundation on liquefible sand,”Geotechnical and Geoenvironmental Engineering, Vol. 123, No. 6, pp. 557-567(1997).
25.Madabhushi, S.P.G., Teymur, B., Haigh, S.K., and Brennan, A.J.,“Modelling of liquefaction and lateral spreading,”International Workshop on Earthquake Simulation in Geotechnical Engineering, Cleveland (2001).
26.Marques A.S.P.S., and Coelho P.A.L.F.,“Centrifuge modeling of seismic liquefaction effects on adjacent shallow foundations,”Physical Modelling in Geotechnics, London (2014).
27.Seed, H.B.,“Soil liquefaction and cyclic mobility evaluation for level ground during earthquake,”Geotechnical Engineering, Vol.105, No.GT2, pp. 201-255 (1979).
28.Seed, H.B., and Idriss, I.M.,“Ground motions and soil liquefaction during earthquakes,”Earthquake Engineering Research Institute Monograph, Oakland (1982).
29.Seed, H.b., Idriss, I.M., Makdisi, F., and Banerji, N.,“Representation of irregular stress time history by equivalent uniform stress series in liquefaction analysis,”Report No. EERC 75-29, Earthquake Engineering Research Center, University of California, Berkeley, California (1975).
30.Sharp, M.K., Dobry, R., and Abdoun T.H., “Liquefaction Centrifuge Modeling of Sands of Different Permability,”Geotechnical Engineering, Vol.129, No.12, pp. 1083-1091 (2003).
31.Sharp, M.K., and Pak, A “Estimating liquefaction-induced settlement of shallow foundations by numerical approach,”Computers and Geotechnics, Vol.37, pp267-279 (2010).
32.Thorel, L., Rault, G., Garnier, J., Escoffier, S., and Boura, C., “Soil-footing interaction: Building subjected to lateral cyclic loading,”6th International Conference on Physical Modelling in Geotechnics (2006).
33.Yoshimi, Y.,“Settlement of buildings on saturated sand during earthquakes,”Soils and Foundations, Vol. 17, pp. 23-28 (1997).