| 研究生: |
謝明軒 Ming-Xuan Xie |
|---|---|
| 論文名稱: |
活性污泥中烷烴降解菌及其烷烴單加氧酶(AlkB)的鑑定 Identification of Alkane-Degrading Bacteria and Their Alkane 1-Monooxygenase (AlkB) in Activated Sludge |
| 指導教授: |
俞聖法
Steve Sheng-Fa Yu 蔡惠旭 Hui-Hsu Gavin Tsai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 127 |
| 中文關鍵詞: | 烷烴單加氧酶 (AlkB) 、不動桿菌 、烷烴降解菌 、活性污泥 、菌種篩選 、即時定量聚合酶連鎖反應 |
| 外文關鍵詞: | Alkane 1-monooxygenase (AlkB), Acinetobacter, Alkane-degrading bacteria, Activated sludge, Bacterial isolation, Real-time quantitative PCR |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在原油精煉與石化產業的工業製程中,石化燃料可能會外洩到土壤和水體環境中。石化燃料中的持久性有機污染物,對人體健康和環境皆有潛在的危害。所幸在廢水處理程序的活性污泥含有多樣的微生物,能夠降解這些燃料中大部分的有機成分,像是烷烴和芳香烴。因此,了解參與降解過程的關鍵微生物對污染場址的生物修復非常重要。在本研究中,我們利用無機鹽培養基和柴油,對活性污泥中的菌群進行了不同天數的強化培養。藉由GC / MSD量測其總離子層析圖(TIC)發現,在五天之內柴油中的直鏈烷烴成分幾乎完全降解。同時,我們觀察到不動桿菌屬的菌群在總體菌相中顯著增加。這樣的結果暗示不動桿菌可能在柴油降解過程中扮演重要的角色。為了瞭解更多細節,我們進一步從活性污泥中純化分離出13種細菌菌株,經16S rDNA進行簡易的物種鑑定,其中三種屬於不動桿菌屬。同時對其烷烴單加氧酶alkB基因進行定序,這些不動桿菌可能含有一種或兩種類型的alkB基因,稱為alkB1和alkB2。此外,我們也量測了不同不動桿菌物種對柴油的降解效率。為了解不同直鏈烷烴對活性污泥中不動桿菌生長的影響,我們利用即時聚合酶連鎖反應,分析不同烷烴碳源培養後,活性污泥中的不動桿菌和Acinetobacter venetianus的數量。
Petroleum fuels may leak into soil and the water body during the process of petroleum refining and related industry. Persistent organic pollutants from petroleum fuels are harmful to human health and the environment. Fortunately, activated sludge contain diverse bacteria that have the ability to degrade most of the petroleum components such as alkanes and aromatics. Thus, understanding the key degraders is important for the bioremediation of the contaminated site. In this study, we optimized the bacterial growth in activated sludge with mineral salt medium and diesel at different time courses. The corresponding study of the total ion chromatogram (TIC), monitored by GC/MSD, show that a variety of chain length of n-alkanes were removed within five days. At the same time, the genus Acinetobacter has been observed with a significant increase in the bacterial community of activated sludge. Our results implied this genus may play an important role during diesel degradation process. To obtain more detail, we further isolated 13 bacterial strains from the activated sludge, three of which belong to Acinetobacter. These Acinetobacter strains were annotated and identified via 16S rDNA as well as their variable alkB gene of alkane 1-monooxygenase. Each of isolated Acinetobacter strains may contain either one or two types of alkB gene, known as alkB1 and alkB2. The diesel degradation efficiency for the variable Acinetobacter strains is also being studied. To understand which alkane can stimulated more Acinetobacter growth in activated sludge, we design a real-time PCR method to detect the population of Acinetobacter and Acinetobacter venetianus in the activated sludge enriched with different sole carbon source.
﹝1﹞ 張嘉哲:東南客運內湖站漏油污染基隆河 環保局開罰。2019年1月12 日,取自https://newtalk.tw/news/view/2019-01-12/193489。
﹝2﹞ 鄒敏惠:內湖東南客運漏油採樣結果出爐 土壤污染超標四倍。2019年4月8日,取自https://e-info.org.tw/node/217345。
﹝3﹞ K. J. Rockne and K. R. Reddy, “BIOREMEDIATION OF CONTAMINATED SITES ”, International e-Conference on Modern Trends in Foundation Engineering: Geotechnical Challenges and Solutions, Indian Institute of Technology, Madras, India, October 2003.
﹝4﹞ G. O. Adams, P. T. Fufeyin, S. E. Okoro and I. Ehinomen, “Bioremediation, Biostimulation and Bioaugmention: A Review ”, Int J Environ Bioremediat Biodegrad, Vol 3, No. 1, pp. 28-39, March 2015.
﹝5﹞ LennyCZ:Activated Sludge 1.svg。2008年11月6日,取自:https://en.wikipedia.org/wiki/File:Activated_Sludge_1.svg。
﹝6﹞ M. Kataoka, K. Honda and S. Shimizu, “3,4-Dihydrocoumarin hydrolase with haloperoxidase activity from Acinetobacter calcoaceticus F46 ”, Eur. J. Biochem.,Vol 267, pp. 3–10, 2000.
﹝7﹞ D. Abd-El-Haleem, H. Moawad, E. A. Zaki and S. Zaki, “Molecular characterization of phenol-degrading bacteria isolated from different Egyptian ecosystems ”, Microb Ecol., Vol 43, pp. 217–224, 2002.
﹝8﹞ S. Rusansky, R. Avigad, S. Michaeli and D. L. Gutnick, “Involvement of a plasmid in growth on and dispersion of crude oil by Acinetobacter calcoaceticus RA57 ”, Appl Environ Microbiol., Vol 53, pp. 1918–1923 ,1987.
﹝9﹞ F. Di Cello, M. Pepi, F. Baldi and R. Fani, “Molecular characterization of an n-alkane-degrading bacterial community and identification of a new species, Acinetobacter venetianus ”, Res Microbiol., Vol 148, pp. 237–249, 1997.
﹝10﹞ M. Fondi, I. Maida, E. Perrin, V. Orlandini, L. La Torre, E. Bosi, A. Negroni, G. Zanaroli, F. Fava, F. Decorosi, L. Giovannetti, C. Viti, M. Vaneechoutte, L. Dijkshoorn and R. Fani, “Genomic and phenotypic characterization of the species Acinetobacter venetianus ”, Sci Rep., Vol 6, No. 21985, February 2016.
﹝11﹞ J. B. van Beilen and E. G. Funhoff, “Expanding the alkane oxygenase toolbox: new enzymes and applications ”, Curr. Opin. Biotechnol., Vol 16, pp. 308–314, 2005.
﹝12﹞ J. B. van Beilen and E. G. Funhoff, “Alkane hydroxylases involved in microbial alkane degradation ”, Appl. Microbiol. Biotechnol., Vol 74, pp. 13–21, 2007.
﹝13﹞ H. Alonso, O. Kleifeld, A. Yeheskel, P. C. Ong, Y. C. Liu, J. E. Stok, J. J. De Voss, A. Roujeinikova, “Structural and mechanistic insight into alkane hydroxylation by Pseudomonas putida AlkB ”, Biochem. J., Vol 460, pp. 283–293, 2014.
﹝14﹞ H. Alonso and A. Roujeinikova, “Characterization and two-dimensional
crystallization of membrane component AlkB of the medium-chain alkane hydroxylase system from Pseudomonas putida GPo1 ”, Appl. Environ. Microbiol., Vol 78, pp. 7946–7953, 2012.
﹝15﹞ J. B. van Beilen, S. Panke, S. Lucchini, A. G. Franchini, M. Röthlisberger and B. Witholt, “Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes ”, Microbiology, Vol 147, pp. 1621–1630, 2001.
﹝16﹞ G. Eggink, H. Engel, G. Vriend, P. Terpstra and B. Witholt, “Rubredoxin reductase of Pseudomonas oleovorans. Structural relationship to other flavoprotein oxidoreductases based on one NAD and two FAD fingerprints ”, J Mol Biol, Vol 212, pp. 135–142, 1990.
﹝17﹞ S. Panke, A. Meyer, C. M. Huber, B. Witholt and M. G. Wubbolts, “An alkane-responsive expression system for the production of fine chemicals ”, Appl Environ Microbiol, Vol 65, pp. 2324–2332, 1999.
﹝18﹞ I. Canosa, J. M. Sanchez-Romero, L. Yuste and F. Rojo, “A positive feedback mechanism controls expression of AlkS, the transcriptional regulator of the Pseudomonas oleovorans alkane degradation pathway ”, Mol Microbiol, Vol 35, pp. 791–799, 2000.
﹝19﹞ M. Kok, R. Oldenhuis, M. P. G. van der Linden, C. H. C. Meulenberg, J. Kingma and B. Witholt, “The Pseudomonas oleovorans alkBAC operon encodes two structurally related rubredoxins and an aldehyde dehydrogenase ”, J Biol Chem, Vol 264, pp. 5442–5451, 1989.
﹝20﹞ M. Kok, R. Oldenhuis, M. P. G. van der Linden, P. Raatjes, J. Kingma, P. H. van Lelyveld and B. Witholt, “The Pseudomonas oleovorans alkane hydroxylase gene. Sequence and expression ”, J Biol Chem, Vol 264, pp. 5435–5441, 1989.
﹝21﹞ J. B. van Beilen, G. Eggink, H. Enequist, R. Bos, and B. Witholt, “DNA sequence determination and functional characterization of the OCT-plasmid-encoded alkJKL genes of Pseudomonas oleovorans ”, Mol Microbiol, Vol 6, pp. 3121–3136, 1992.
﹝22﹞ M. J. Coon, “Omega Oxygenases: Nonheme-iron enzymes and P450 cytochromes ”, Biochem. Biophys. Res. Commun., Vol 338, pp. 378–385, 2005.
﹝23﹞ J. Shanklin, and E. Whittle, “Evidence linking the Pseudomonas oleovorans alkane ω-hydroxylase, an integral membrane diiron enzyme, and the fatty acid desaturase family ”, FEBS Lett., Vol 545, pp. 188–192, 2003.
﹝24﹞ J. B. van Beilen, T. H. M. Smits, F. F. Roos, T. Brunner, S. B. Balada, M. Röthlisberger and B. Witholt, “Identification of an amino acid position that determines the substrate range of integral membrane alkane hydroxylases ”, J. Bacteriol., Vol 187, pp. 85–91, 2005.
﹝25﹞ R. N. Austina and J. T. Groves, “Alkane-oxidizing metalloenzymes in the carbon cycle ”, Metallomics, Vol 3, pp. 775–787, 2011.
﹝26﹞ C. Park, B. Shin, J. Jung, Y. Lee and W. Park, “Metabolic and stress responses of Acinetobacter oleivorans DR1 during long-chain alkane degradation ”, Microb Biotechnol., Vol 10, pp. 1809–1823, 2017.
﹝27﹞ A. Tani, T. Ishige, Y. Sakai, and N. Kato, “Gene Structures and Regulation of the Alkane Hydroxylase Complex in Acinetobacter sp. Strain M-1 ”, J. Bacteriol., Vol 183, No. 5, pp. 1819–1823, March 2001.