跳到主要內容

簡易檢索 / 詳目顯示

研究生: 廖珉鋒
Fong Liang
論文名稱: 動態起迄旅次矩陣推估模型之研究
指導教授: 陳惠國
Huey-Kuo Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 88
語文別: 中文
論文頁數: 96
中文關鍵詞: 最小平方法敏感度分析路段容量限制變分不等式雙層規劃模型起迄旅次推估
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以Chen and Hsueh(1998a,b)所提出之動態用路人均衡路徑選擇模型及求解演算法為基礎,延續蕭淑芸(1999)、周鄭義(1999)之研究,應用變分不等式理論繼續探討動態起迄旅次矩陣推估雙層規劃模型問題。本研究利用雙層規劃方法(Bi-level Programming Approach)構建動態起迄旅次矩陣推估模型,上層模型為以最小平方法的觀念,以使得推估起迄旅次量及路段流量,與先驗旅次量及觀測路段流量間之差距最小;下層模型為用路人均衡路徑選擇問題,即相同起迄對相同出發時區之用路人均利用最短路徑到達目的地。並透過變分不等式敏感度分析理論,以卓訓榮(1991)提出之廣義反矩陣方法(Generalized Inverse Approach)獲得敏感度分析資訊,發展動態起迄旅次矩陣推估問題之求解演算法,最後以測試範例證實模型及演算法之正確性。
    由於受道路幾何設計及路口號誌時制影響,道路有一容量限制,為使模型更符合實際,加入額外限制式(路段容量限制式),構建含路段容量限制之動態起迄旅次矩陣推估模型。在求解演算法方面,以拉氏法結合梯度投影法求解含額外限制式的問題,並以測試範例進行測試與分析。


    中文摘要……………………………………………………..………….. i 英文摘要…………………………………………………………………ii 誌謝……………………………………………………………………...iii 目錄……………………………………………………………………...iv 圖目錄………………………………………………………………….viii 表目錄…………………………………………………………………...ix 第一章 緒論..………………………...……………………………….....1 1.1 研究動機…………………..…………………………………...1 1.2 研究目的……………………………..………………………...2 1.3 研究假設及範圍…………………………………..…………...2 1.3.1 研究假設………………………………..………………..2 1.3.2 研究範圍………………………..………………………..3 1.4 研究流程………………………...……………………………..4 第二章 文獻回顧…………………………………………...…………...5 2.1 動態起迄旅次推估模型………………………………..……...5 2.1.1 路段流量推估起迄旅次量………………………..……..5 2.1.2 動態起迄旅次推估…………………………………..…..9 2.2 動態旅運選擇模型……………………………..…………….11 2.2.1 動態用路人均衡路徑選擇模型…………………..……11 2.2.2 含路段容量限制條件……………………………..……13 2.3 變分不等式敏感度分析…………………………..………….14 2.4 小結…………………………..……………………………….16 第三章 動態旅次起迄推估雙層規劃模型……………………………17 3.1 動態用路人均衡選擇模型……………………………..…….17 3.1.1 均衡條件…………………………..……………………17 3.1.2 模型建立..…………………………………………..…..18 3.2 動態起迄旅次矩陣推估模型………………………………...19 3.3 求解演算法…………………………………………………...21 3.3.1 演算法步驟…………..…………………………………21 3.3.2 梯度投影法……………………………..………………24 3.4 測試範例……………………………………………………...28 3.4.1 測試例一…………………………..……………………28 3.4.1.1 輸入資料………………………..……………...28 3.4.1.2 測試結果………………………………..……...29 3.4.2 測試例二……………………..…………………………31 3.4.2.1 輸入資料……………………..………………...31 3.4.2.2 測試結果…………………………..…………...32 3.5 小結…………………………………………………………...34 第四章 變分不等式敏感度分析………………………………………35 4.1 敏感度分析理論…………………..………………………….35 4.2 網路均衡問題之應用……………..………………………….38 4.3 利用廣義反矩陣進行敏感度分析……………………..…….41 4.3.1 廣義反矩陣之定義與定理……………..………………41 4.3.2 廣義反矩陣於網路均衡問題敏感度分析…………..…42 4.4 例證分析……………………..……………………………….45 4.5.1 輸入資料………………………..………………………45 4.5.2 微擾參數 之均衡結果……………………………..46 4.5.3 利用廣義反矩陣計算敏感度分析資訊…………..……47 4.5.4 由敏感度分析資訊推估路段流入率……………..……55 4.5 小結…………………..……………………………………….57 第五章 含容量限制之動態起迄旅次推估模型………………………58 5.1 含容量限制之動態用路人均衡路徑選擇模型…………..….59 5.1.1 均衡條件……………………..…………………………59 5.1.2 模型建立……………………..…………………………60 5.1.3 最佳化條件…………………..…………………………61 5.2 含容量限制之動態起迄旅次矩陣推估雙層模型………..….64 5.3 求解演算法 …………..……………………………………...66 5.3.1 拉氏法……………………..……………………………66 5.3.2 含容量限制動態起迄旅次推估演算法步驟…..………69 5.4 測試範例…………………..………………………………….71 5.4.1 測試例一………………………..………………………72 5.4.1.1 輸入資料…………………………..…………….72 5.4.1.2 測試結果…………………..…………………….73 5.4.2 測試例二…………………..……………………………75 5.4.2.1 輸入資料………………………..……………...75 5.4.2.2 測試結果………………………..……………...76 5.5 小結……………………..…………………………………….79 第六章 結論與建議………………………………...………………….81 6.1 結論………………..………………………………………….81 6.2 建議……………………..…………………………………….84 參考文獻………………………………………...……………………...86 附錄A 主要符號對照表……………………………………………….90 附錄B……………………………………...……………………………93 B.1動態用路人均衡路徑選擇模型結果..………………………..93 B.2含容量限制之動態用路人均衡路徑選擇模型結果..………..94 附錄C…………………………………………………………………...96 C.1含容量限制之動態起迄旅次矩陣推估模型結果……………96

    1. 王中允,1999,路段容量限制動態用路人旅運選擇模型之研究,國立中央大學土木工程學系博士論文,中壢。
    2. 卓訓榮,1991,「以廣義反矩陣方法探討均衡路網流量的敏感性分析」,運輸計畫季刊,第20卷,第1期,1-14。
    3. 周鄭義,1999,動態號誌時制最佳化之研究—雙層規劃模型之應用,國立中央大學土木工程學系碩士論文,中壢。
    4. 張美香,1998,動態旅運選擇模型之研究,國立中央大學土木工程學系博士論文,中壢。
    5. 張佳偉,1997,路徑變數產生法求解動態交通量指派模型之效率比較,國立中央大學土木工程學系碩士論文,中壢。
    6. 陳惠國,王中允,1999,「拉氏演算法求解路段容量限制動態用路人路徑選擇問題之比較」,中國土木水利工程學刊(已接受)。
    7. 陳惠國,張美香,1994,「路段流量推估起迄旅次量之研究」,中華道路,第33卷,第2期,頁3-10。
    7. 陳惠國,張美香,1994,「路段流量推估起迄旅次量之研究」,中華道路,第33卷,第2期,頁3-10。
    9. 曾國雄,卓訓榮,周幼珍,江勁毅,1997,「動態流量推估動態O-D方法之研究」,運輸計畫季刊,第26卷,第4期,頁615-638。
    10. 薛哲夫,1996,明確型動態旅運選擇模型之研究,國立中央大學土木工程學系碩士論文,中壢。
    11. 蕭淑芸,1999,路段流量推估起迄旅次矩陣—雙層規劃模型之應用,國立中央大學土木工程學系碩士論文,中壢。
    12. Bertsekas D. P., 1982, Constrained Optimization and Lagrange Multiplier Methods, Academic Press, New York.
    13. Bell M.G.H., 1991, “The Real Time Estimation of Origin-Destination Flows in the Presence of Platoon Dispersion,” Transportation Research, 25B, 115-125.
    14. Cascetta E., 1984, “Estimation of Trip Matrices from Traffic Count and Survey Data: A Generalized Least Squares Estimation,” Transportation Research, 18B, 289-299.
    15. Cascetta E. and Nguyen S., 1988, “A Unified Framework for Estimating or Updating Origin/Destination Matrices from Traffic Counts,” Transportation Research, 22B, 437-455.
    16. Chang E.C.P., 1984, “Estimate the Origin-Destination Matrix from Link Volumes Using the Equilibrium Assignment,” Transportation Planning Journal, 13, 599-612.
    17. Chang G.L. and Wu J., 1994, “Recursive Estimation of Time-Varying Origin-Destination Flows from Traffic Counts in Freeway Corridors,” Transportation Research, 28B, 141-160.
    18. Chao G.S., and Friesz T.L., 1984, “Spatial Price Equilibrium Sensitivity Analysis,” Transportation Research, 18B, 423-440.
    19. Chen H.K., and Wang C.Y., 2000, “Dynamic Capacitated User-Optimal Route Choice Problem,” Transportation Research Record 1667, 16-24.
    20. Chen H.K., and Wang C.Y., 1999, “Dynamic User-Optimal Route Choice Problem with First-In-First-Out Requirement,” Journal of Operations Research (Submitted).
    21. Chen H.K., 1999, Dynamic Travel Choice Models : A Variational Inequality Approach, Springer-Verlag, Berlin.
    22. Chen H.K. and Hsueh C.F., 1998a, “A Discrete-Time Dynamic User-Optimal Departure Time/Route Choice Model,” Journal of Transportation Engineering, ASCE, 124, 246-254.
    23. Chen H.K. and Hsueh C.F., 1998b, “A Model and an Algorithm for the Dynamic User-Optimal Route Choice Problem,” Transportation Research, 32B, 219-234.
    23. Chen H.K. and Hsueh C.F., 1998b, “A Model and an Algorithm for the Dynamic User-Optimal Route Choice Problem,” Transportation Research, 32B, 219-234.
    25. Cho H.J. and Lo S.C., 2000, “Solving Bilevel Network Design Problem Using A Linear Reaction Function without Nondegeneracy Assumption,” Transportation Research Record 1667, 96-106.
    26. Cremer M. and Keller H., 1987, “A New Class of Dynamic Methods for the Identification of Origin-Destination Flows,” Transportation Research, 21B, 117-132
    26. Cremer M. and Keller H., 1987, “A New Class of Dynamic Methods for the Identification of Origin-Destination Flows,” Transportation Research, 21B, 117-132
    28. Fiacco A.V., 1983, Introduction to Sensitivity and Stability Analysis in Nonlinear Programming, Academic Press, New York.
    29. Fisk C.S., 1984, “Game Theory and Transportation Systems Modeling,” Transportation Research, 18B, 301-313.
    30. Fisk C.S., 1988, “On Combining Maximum Entropy Trip Matrix Estimation with User Optimal Assignment,” Transportation Research, 22B, 66-79.
    31. Hazelton M.L., 2000, “Estimation of Origin-Destination Matrices from Link Flows on Uncongested Networks,” Transportation Research, 34B, 549-566.
    32. Janson B.N., 1993, “Most Likely Origin-Destination Link Uses from Equilibrium Assignment,” Transportation Research, 27B, 333-350.
    33. Larsson T. and Patriksson M., 1995, “An Augmented Lagrangean Dual Algorithm for Link Capacity Side Constrained Traffic Assignment Problems,” Transportation Research, 29B, 433-455.
    34. Larsson T. and Patriksson M., 1999, “Side Constrained Traffic Equilibrium Models— Analysis, Computation and Application,” Transportation Research, 33B, 233-264.
    35. Nguyen S., 1984, “Estimating Origin-Destination Matrices from Observed Flows,” Transportation Planning Models, Edited by Florian, M., North-Holland, 363-380.
    36. Nihan N.L. and Davis G.A., 1987, “Recursive Estimation of Origin-Destination Matrices from Input/Output Count,” Transportation Research, 21B, 149-163.
    37. Nagurney A., 1993, Network Economics: A Variational Inequality Approach, Kluwer Academic Publishers.
    38. Patriksson M., 1994, The Traffic Assignment Problem: Models and Methods, Utrecht, The Netherlands.
    39. Ran B. and Boyce D.E., 1996, Modeling Dynamic Transportation Network: An Intelligent Transportation System Oriented Approach, Springer-Verlag, New York.
    40. Sheffi Y., 1985, Urban Transportation Networks : Equilibrium Analysis with Mathematical Programming Methods, Prentice-Hall, Inc., Englewood Cliffs.
    41. Tobin R.L., 1986, “Sensitivity Analysis for Variational Inequalities,” Journal of Optimization Theory and Applications, 48, 191-204.
    42. Tobin R.L. and Friesz T., 1988, “Sensitivity Analysis for Equilibrium Network Flow,” Transportation Science, 22, 242-250.
    43. van Zuylen H.J. and Willumsen L.G., 1980, “The Most Likely Trip Matrix Estimated from Traffic Counts,” Transportation Research, 14B, 281-293.
    43. van Zuylen H.J. and Willumsen L.G., 1980, “The Most Likely Trip Matrix Estimated from Traffic Counts,” Transportation Research, 14B, 281-293.
    45. Willumsen L.G., 1978, “Estimation of an O-D Matrix from Traffic Count: A Review,” Institute for Transport Studies, Leeds University.
    46. Wu J. and Chang G.L., 1996, “Estimation of Time-Varying Origin-Destination Distributions with Dynamic Screenline Flows,” Transportation Research, 30B, 277-290.
    47. Wu J., 1997, “A Real-Time Origin-Destination Matrix Updating Algorithm for On-Line Applications,” Transportation Research, 31B, 381-396.
    48. Yang H., 1995, “Heuristic Algorithms for the Bilevel Origin-Destination Matrix Estimation Problem,” Transportation Research, 29B, 231-242.
    49. Yang H., Sasaki T., Iida Y. and Asakura Y., 1992, “Estimation of Origin-Destination Matrices from Link Traffic Counts on Congested Network,” Transportation Research, 26B, 417-434.
    50. Zhang X. and Maher M., 1996, “Algorithms for Trip Matrix Estimation and for Traffic Signal Optimization on Congested Network,” Sixth Meeting of EURO Working Group on Transportation.

    QR CODE
    :::