| 研究生: |
周書平 Shu-Ping Chou |
|---|---|
| 論文名稱: | A Polynomial Time Approximation Scheme for Parallel Machine Scheduling with Machine Availability Constraints |
| 指導教授: |
葉英傑
Yin-Chieh Yeh |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業管理研究所 Graduate Institute of Industrial Management |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 多項式時間近似方案 、機器可用區間限制 、平行機台 |
| 外文關鍵詞: | Polynomial time approximation scheme, Availability constraints, Parallel Machines |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究討論不可分割工作的平行機台的最大完工時間最小化問題,其中機器具有任意的可用區間限制;假設至少有一台機器在整個規劃期間始終可用,這種設置契合在產業應用上和學術上的需求。例如,製造業中,這樣的限制來自於機器需要進行例行性維護。而在學術上,根據本研究的探討,過去沒有提出對輸入添加結構的多項式時間近似方案演算法(PTAS)。透過向輸入資料添加結構,本研究提供第一個多項式時間近似方案演算法(PTAS)。
This study analyzes the makespan minimization problem of non-preemptively scheduling identical parallel machines where machines may be unavailable during arbitrary time intervals. Assuming at least one machine is always available throughout the planning horizon, this setting is relevant practically and academically. For example, the unavailability occurs when machines are under preventive maintenance. So far as this study is concerned, no polynomial-time approximation scheme (PTAS) via structuring the input data has been proposed. This study aims to provide the first polynomial-time approximation scheme (PTAS) by adding structure to the input.
Caprara, A., Kellerer, H., & Pferschy, U. (2000). A PTAS for the Multiple Subset Sum Problem with Different Knacpsack Capacities. Inf. Proces. Lett., 73(3-4), 111-118.
Chang, S. Y., & Hwang, H.-C. (1999). The Worst-case Analysis of the MULTIFIT Algorithm for Scheduling Nonsimultaneous Parallel Machines. Discrete Applied Mathematics, 92(2-3), 135-147.
Chukuri, C., & Khanna, S. (2005). A Polynomial Time Approximation Scheme for the Multiple Knapsack Porblem. SIAM J. COMPUT., 35(3), 713-728.
Diedrich, F., Jansen, K., & Pascual, F. (2010). Approximation Algorithms for Scheduling with Reservations. Algorithmica, 58, 391-404.
Eyraud-Dubois, L., Mounié, G., & Trystram, D. (2007). Analysis of Scheduling Algorithms with Reservations. Paper presented at the IPDPS 2007, Long Beach, California, United States.
Fu, B., Huo, Y., & Zhao, H. (2011). Approximation Schemes for Parallel Machine Scheduling with Availability Constraints. Discrete Applied Mathematics, 159, 1555-1565.
Garey, M., & Johnson, D. S. (1978). 'Strong' NP-completeness Results: Motivation, Examples, and Implications. Journal of the ACM, 25, 499-508.
Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. San Francisco, United States: Freeman.
Graham, R. L. (1966). Bounds for Certain Multiprocessing Anomalies. Discrete Applied Mathematics, 3, 313-318.
Graham, R. L. (1969). Bounds on Multiprocessing Timing Anonalies. SIAM J. APPL. MATH., 17(2), 416-429.
Hochbaum, D. S., & Shmoys, D. B. (1987). Using Dual Approximation Algorithms for Scheduling Problems: Theoretical and Practical Results. Journal of the ACM, 34, 144-162.
Hochbaum, D. S., & Shmoys, D. B. (1988). A Polynomial Approximation Scheme for Scheduling on Uniform Processors: Using the Dual Approximation Approach. SIAM J. COMPUT., 17(3), 539-551.
Horowitz, E., & Sahni, S. (1974). Computing Partitions with Applications to the Knapsack Problem. Journal of the ACM (JACM), 21(2), 277-292.
Hwang, H.-C., Lee, K., & Chang, S. Y. (2005). The Effect of Machine Availability on the Worst-case Performance of LPT. Discrete Applied Mathematics, 148, 49-61.
Iverson, K. E. (1962). A Programming Language: John Wiley & Sons Inc.
Johnson, D. S. (1974). Approximation Algorithms for Combinatorial Problems. Journal of Computer and Systems Sciences, 9, 256-278.
Kaabi, J., & Harrath, Y. (2014). A Survey of Parallel Machine Scheudling uder Availability Constraints. International Journal of Computer and Information Technology, 3(2), 238-245.
Kellerer, H. (1998). Algorithms for Multiprocessor Scheduling with Machine Release Times. IIE Transactions, 30, 991.
Kellerer, H., Mansini, R., Sferschy, U., & Speranza, M. G. (2003). An Efficient Fully Polynomial Approximatiom Scheme for the Subset-sum Problem. J. Comput. Syst. Sci., 66(2), 349-370.
Lee, C.-Y. (1991). Parallel Machines Scheduling with Nonsimultaneous Machine Available Time. Discrete Applied Mathematics, 30, 53-61.
Lee, C.-Y. (1996). Machine Scheduling with An Availabiluty Constraint. Journal of Global Optimization, 9, 395-416.
Liao, L.-W., & Sheen, G.-J. (2008). Parallel Machine Scheduling with Machine Availability and Eligibility Constraints. European Journal of Operational Research, 184, 458-467.
Lin, G., Yujun, Y., & Lu, H. (1997). Exact Bounds of the Modified LPT Algorithms Applying to Parallel Machines Scheduling with Nonsimultaneous Machine Available Times. Applied Mathematics-A Journal of Chinese Universities, 12(1), 109-116.
Ma, Y., Chu, C., & Zuo, C. (2010). A Survey of Scheduling with Deterministic Machine Availability Constraints. Computers & Industrial Engineering, 58, 199-211.
Pinedo, M. L. (2016). Scheduling: Theory, Algorithms, and Systems (5th ed.): Springer.
Sahni, S. (1975). Approximate Algorithms for the 0/1 Knapsack Problem. Journal of the ACM (JACM), 22(1), 115-124.
Schuurman, P., & Woeginger, G. J. (2011). Approximation Schemes - A Tutorial. In R. H. Möring, C. N. Potts, A. S. Schulz, G. J. Woeginger, & L. A. Wolsey (Eds.), Lectures on Scheduling (pp. 1-68).
Suresh, V., & Ghaudhuri, D. (1996). Schduling of Unrelated Parallel Machines when Machine Availability Is Specified. Production Planning & Control: The Management of Operations, 7(4), 393-400.