| 研究生: |
郭明中 Ming-Chung Kuo |
|---|---|
| 論文名稱: |
三苯胺及 2,3-雙苯基喹啉的p型有機染料敏化太陽能電池之研究 Organic Dyes Containing Triphenylamine and 2,3-Diphenylquinoxaline for p-type Dye-Sensitized Solar Cells |
| 指導教授: |
孫世勝
Shih-Sheng Sun 吳春桂 Chun-Guey Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2016 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 135 |
| 中文關鍵詞: | p型有機染料敏化太陽能電池 、三苯胺 、2,3-雙苯基喹啉 |
| 外文關鍵詞: | p-type Dye-Sensitized Solar Cells, Triphenylamine, 2,3-Diphenylquinoxaline |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文設計並合成6個D–A–π–A 型式的EH系列p型有機染料,以一個或兩個羧酸根為錨固基團,三苯胺(triphenylamine)為推電子端,2,3-雙苯基喹啉(2,3-diphenylquinoxaline)為輔助拉電子片段,2-亞甲基丙二腈(2-methylenemalononitrile)為拉電子基團,中間分別以噻吩(thiophene)、3,4-ethylenedioxythiophene(EDOT)以及2,2'-聯噻吩(2,2'-bithiophene)為π共軛片段。可區分為含一個錨固基和兩個發色團的單錨染料(EH122、EH166、EH174),及兩個錨固基和一個發色基團的雙錨染料(EH126、EH162、EH170)。為探討不同的π共軛片段以及單錨雙錨結構對染料光電表現的影響,分別進行紫外光-可見光吸收光譜、螢光激發放射光譜、循環伏特安培法、EIS(electronchemical impedance spectroscopy)等實驗。
同時將上述染料製作成p型染料敏化太陽能電池元件,利用 AM 1.5 irradiation(100 mW/cm2)太陽光模擬進行效能測試。
結果顯示EH174有最佳的光電轉換效率η = 0.207%(Jsc = 4.84 mA/cm2, Voc = 137 mV, ff = 0.312),而含有EDOT片段的雙錨染料EH162為η = 0.062%,效果不大理想,推測可能原因是:莫耳消光係數相較單錨結構低,且在激發態的電荷分離較不明顯,導致整體效率下降。
透過本論文對π共軛片段以及單錨雙錨染料結構和電池效能之間相關性的研究,希望未來能設計出更高效能的光捕獲材料。
Six new p-type D–A–π–A dyes have been synthesized and studied. These dyes consist of one or two carboxylic acid as the anchoring group, triarylamine as the electron donor, 2,3-diphenylquinoxaline as the auxiliary acceptor moiety, 2-methylenemalononitrile as electron acceptor, connected with thiophene, 3,4-ethylenedioxythiophene(EDOT)and 2,2'-bithiophene as the π-spacor. It can be divided into one anchoring dye(EH122、EH166、EH174)and two anchoring dye(EH126、EH162、EH170). The influence of different π-spacor dye on photovoltaic performance were studied by UV/Vis, fluorescence spectroscopy, cyclic voltammetry and EIS(electronchemical impedance spectroscopy).
The cell performances of cells assembled from these light-harvesting dyes have been evaluated using the AM 1.5 simulated solar light.
The results showed that EH174 has the best power conversion efficiency of 0.207 %(Jsc = 4.84 mA/cm2, Voc = 137 mV, ff = 0.312)under AM 1.5 irradiation(100 mW/ cm2)whereas the two anchoring dye EH162(= 0.062%)with EDOT moiety was not as effective as expected perhaps due to low molar extinction coefficient compare to one anchoring dye, and charge separation is not obvious at excitation state which leads a low overall efficiency.
A general correlation between the structural factors and the cell performances are currently under investigation aiming to provide a guideline for future design of high performance light-harvesting dyes.
1. Grätzel, M. Nature 2001, 414, 338–344.
2. Chapin, D. M.; Fuller, C. S.; Pearson, G. L. J. Appl. Phys. 1954, 25, 676–677.
3. Williams, R. J. Chem. Phys. 1960, 32, 1505–1514.
4. Hurd, F.; Livingston, R. J. Phys. Chem. 1940, 44, 865–873.
5. (a) Oster, G.; Bellin, J. S.; Kimball, R. K.; Schrader, M. E. J. Am. Chem. Soc. 1959, 81, 5095–5099. (b) Chaberek, S.; Shepp, A.; Allen, R. J. J. Phys. Chem. 1965, 69, 641–647. (c) Chaberek, S.; Shepp, A.; Allen, R. J. J. Phys. Chem. 1965, 69, 647–656.
6. Chaberek, S.; Sheep, A.; Allen, J. J. Am. Chem. Soc. 1967, 89, 5456–5457.
7. Tsubimur, H.; Mastsumura, M.; Nomura, Y.; Amamiya, T. Nature 1976, 261, 402–403.
8. Regan, B. O.; Grätzel, M. Nature 1991, 343, 737–.739
9. Nazeeruddin, M. K.; DeAngelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. J. Am. Chem. Soc. 2005, 127, 16835–16847.
10. Wu, C. G.; Zakeeruddin,S. M.; Grätzel, M. ACS Nano 2009, 3, 3103–3109.
11. Yella, A.; Lee, H.-W.; Tsao, H. –N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, W. G.; Yeh, C. Y.; Zakeeruddin, S. M.; Grätzel, M. Science 2011, 334, 629–634.
12. Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F. E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, K.; Grätzel, M. Nature 2014, 6, 242–247.
13. He, J.; Lindström, H.; Hagfeldt, A.; Lindquist, S-E. J. Phys. Chem. B 1999, 103, 8940–8943.
14. He, J.; Lindström, H.; Hagfeldt, A.; Lindquist, S-E. Sol. Energy. Mater. Sol. Cells. 2000, 62, 265–273.
15. Nakasa, A.; Usami, H.; Sumikura, S.; Hasegawa, S.; Koyama, T.; Suzuki, E. Chem. Lett. 2005, 34, 500–501.
16. Morandeira, A.; Boschloo, G.; Hagfeldt, A.; Hammarström, L. J. Phys. Chem. B 2005, 109, 19403–19410.
17. Borgström, M.; Blart, E.; Boschloo, G.; Mukhtar, E.; Hagfeldt, A.; Hammarström, L.; Odobel, F. J. Phys. Chem. B 2005, 109, 22928–22934.
18. Zhu, H.; Hagfeldt, A.; Boschloo, G. J. Phys. Chem. C 2007, 111, 17455– 17458.
19. Morandeira, A.; Boschloo, G.; Hagfeldt, A.; Hammarström, L. J. Phys. Chem. C 2008, 112, 9530–9537.
20. Mori, S.; Fukuda, S.; Sumikura, S.; Takeda, Y.; Tamaki, Y.; Suzuki, E.; Abe, T. J. Phys. Chem. C 2008, 112, 16134–16139.
21. Morandeira, A.; Fortage, J.; Edvinsson, T.; Pleux, L. L.; Blart, E.; Boschloo, G.; Hagfeldt, A.; Hammarström, L.; Odobel, F. J. Phys. Chem. C 2008, 112, 1721–1728.
22. Gibson, E. A.; Smeigh, A. L.; Pleux, L. L.; Fortage, J.; Boschloo, G.; Blart, E.; Pellegrin, Y.; Odobel, F.; Hagfeldt, A.; Hammarström, L. Angew. Chem. Int. Ed. 2009, 48, 4402–4405.
23. Nattestad, A.; Mozer, A. J.; Fischer, M. K. R.; Cheng, Y.-B.; Mishra, A.; Bäuerle, P.; Bach, U. Nature. Mater. 2010, 9, 31–35.
24. Zhang, X. L.; Zhang, Z.; Chen, D.; Bäuerle, P.; Bache, U.; Cheng,Y. B. Chem. Commun. 2012, 48, 9885–9887.
25. Click, K. A.; Beauchamp, D. R.; Garrett, B. R.; Huang, Z.; Hadad, C. M.; Wu, Y. Phys.Chem.Chem.Phys. 2014, 16, 26103–26111.
26. Liu, Z.; Xiong, D.; Xu, X.; Arooj, Q.; Wang, H.; Yin, L.; Li, W.; Wu, H.; Zhao, Z.; Chen, W.; Wang, M.; Wang, F.; Cheng, Y. B.; He, H. ACS Appl. Mater. Interfaces 2014, 6, 3448−3454.
27. Liu, Z.; Li, W.; Topa, S.; Xu, X.; Zeng, X.; Zhao, Z.; Wang, M.; Chen, W.; Wang, F.; Cheng, Y. B.; He, H. ACS Appl. Mater. Interfaces 2014, 6, 10614−10622.
28. (a) Nusbaumer, H.; Moser, J.; Zakeeruddin, S.; Nazeeruddin, M.; Grätzel, M. J. Phys. Chem. B. 2001, 105, 10461–10464. (b) Nusbaumer, H.; Zakeeruddin, S.; Moser, J.; Grätzel, M. Chem. Eur. J. 2003, 9, 3756–3763. (c) Feldt, S. M.; Wang, G.; Boschloo, G.; Hagfeldt, A. J. Phys. Chem.C. 2011, 115, 21500–21507. (d) Tsao, H.; Yi, C.; Moehl, T.; Yum, J.; Zakeeruddin, S.; Nazeeruddin, M.; Grätzel, M. ChemSusChem. 2011, 4, 591–594. (e) Wang, M.; Grätzel,C.; Zakeeruddin, S. M.; Grätzel, M. Energy Environ. Sci. 2012, 5, 9394–9405.
29. (a) Tennakone, K.; Kumara, G. R. A.; Kumarasinghe, A. R.; Wijayantha, K. G. U.; Sirimanne, P. M. Semicond. Sci. Technol. 1995, 10, 1689–1693. (b) Kumara, G. R. A.; Konno, A.; Shiratsuchi, K.; Tsukahara, J.; Tennakone, K. Chem. Mater. 2002, 14, 954–955. (c) Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Weissortel, F.; Salbeck, J.; Spreitzer, H.; Grätzel, M. Nature 1998, 395, 583–585. (d) Snaith, H. J.; Moule, A. J.; Klein, C.; Meerholz, K.; Friend, R. H.; Grätzel, M. Nano Lett. 2007, 7, 3372–3376. (e) Xia, J.; Masaki, N.; Lira-Cantu, M.; Kim, Y.; Jiang, K.; Yanagida, S. J. Am. Chem. Soc. 2008, 130, 1258–1263.
30. (a) Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Weissortel, F.; Salbeck, J.; Spreitzer, H.; Grätzel, M. Nature 1998, 395, 583–585. (b) Bach, U.; Tachibana, Y.; Moser, J. E.; Haque, S. A.; Durrant, J. R.; Grätzel, M.; Klug, D. R. J. Am. Chem. Soc. 1999, 121, 7445–7446. (c) Wang, P.; Wenger, B.; Humphry-Baker, R.; Moser, J. E.; Teuscher, J.; Kantlehner, W.; Mezger, J.; Stoyanov, E. V.; Zakeeruddin, S. M.; Grätzel, M. J. Am. Chem. Soc. 2005, 127, 6850–6856. (d) Kubo, W.; Kitamura, T.; Hanabusa, K.; Wada, Y.; Yanagida, S. Chem. Commun. 2002, 374–375. (e) Wang, P.; Zakeeruddin, S. M.; Comte, P.; Exnar, I.; Grätzel, M. J. Am. Chem. Soc. 2003, 125, 1166–1167.
31. Chung, I.; Lee, B.; He J.; Chang, P. H.; Mercouri, G. Kanatzidis. Nature 2012, 485, 486–489.
32. Olsen, E.; Hagen, G.; Lindquist, S. E. Sol. Energy Mater. Sol. Cells 2000, 63, 267–273.
33. Cravino, A.; Roquet, S.; Leriche, P.; Alévêque, O.; Frère, P.; Roncali, J. Chem. Commun. 2006, 1416–1418.
34. Tao, S.; Zhou, Y.; Lee, C-S.; Lee, S-T.; Huang, D.; Zhang, X. J. Phys. Chem. C 2008, 112, 14603–14606.
35. Hara, K.; Tachibana, Y.; Ohga, Y.; Shinpo, A.; Suga, S.; Sayama, K.; Sugihara, H.; Arakawa, H. Sol. Energy. Mater. Sol. Cells 2003, 77, 89–103.
36. Hara, K.; Sato, T.; Katoh, R.; Furube, A.; Ohga, Y.; Shinpo, A.; Suga, S.; Sayama, K.; Sugihara, H.; Arakawa, H. J. Phys. Chem. B 2003, 107, 597–606.
37. Kuang, D.; Uchida, S.; Humphry-Baker, R.; Zakeeruddin, S. M.; Grätzel, M. Angew. Chem. Int. Ed. 2008, 47, 1923–1927.
38. Horiuchi, T.; Miura, H.; Sumioka, K.; Uchida, S. J. Am. Chem. Soc. 2004, 126, 12218–12219.
39. Kim, S.; Lee, J. K.; Kang, S. O.; Ko, J.; Yum, J. -H.; Fantacci, S.; Angelis, F. D.; Di Censo, D.; Nazeeruddin, M. K.; Grätzel, M. J. Am. Chem. Soc. 2006, 128, 16701–16707.
40. Qin, H.; Wenger, S.; Xu, M.; Gao, F.; Jing, X.; Wang, P.; Zakeeruddin, S. M.; Grätzel, M. J. Am. Chem. Soc. 2008, 130, 9202–9203.
41. Bonhôte, P.; Moser, J-E.; Humphry-Baker, R.; Vlachopoulos, N.; Zakeeruddin, S. M.; Walder, L.; Grätzel, M. J. Am. Chem. Soc. 1999, 121, 1324–1336.
42. Shirota, Y. J. Mater. Chem. 2000, 10, 1–25.
43. Kitamura, T.; Ikeda, M.; Shigaki, K.; Inoue, T.; Anderson, N. A.; Ai, X.; Lian, T. Q.; Yanagida, S. Chem. Mater. 2004, 16, 1806–1812.
44. (a) Ohshita, J. Macromol. Chem. Phys. 2009, 210, 1360–1370. (b) Zhan, X.; Barlow, S.; Marder, S. R. Chem. Commun. 2009, 1948–1955.
45. (a) Wang, Z.-S.; Koumura, N.; Cui, Y.; Takahashi, M.; Sekiguchi, H.; Mori, A.; Kubo, T.; Furube, A.; Hara, K. Chem. Mater. 2008, 20, 3993–4003. (b) Wang, X.-F.; Kitao, O.; Zhou, H.; Tamiaki, H.; Sasaki, S.-i. J. Phys. Chem. C 2009, 113, 7954–7961.
46. Zeng, W.; Cao, Y.; Bai, Y.; Wang, Y.; Shi, Y.; Zhang, M.; Wang, F.; Pan, C.; Wang, P. Chem. Mater. 2010, 22, 1915–1925.
47. Qin, P.; Zhu, H.; Edvinsson, T.; Boschloo, G.; Hagfeldt, A.; Sun, L. J. Am. Chem. Soc. 2008, 130, 8570–8571.
48. Qin, P.; Wiberg, J.; Gibson, E. A.; Linder, M.; Li, L.; Brinck, T.; Hagfeldt, A.; Albinsson, B.; Sun, L. J. Phys. Chem. C 2010, 114, 4738–4748.
49. Ji, Z.; Natu, G.; Huang, Z.; Wu, Y. Energy Environ. Sci. 2011, 4, 2818–2821.
50. Wu, Y. Z.; Zhu, W. H. Chem. Soc. Rev. 2013, 42, 2039–2058.
51. Zhu, W.; Wu, Y.; Wang, S.; Li, W.; Li, X.; Chen, L.; Wang, Z. S.; Tian, H. Adv. Funct. Mater. 2011, 21, 756–763.
52. Wu, Y.; Marszalek, M.; Zakeeruddin, S. M.; Zhang, Q.; Tian, H.; Grätzel, M.; Zhu, W. Energy Environ. Sci. 2012, 5, 8261–8272.
53. Li, W.; Wu, Y.; Zhang, Q.; Tian, H.; Zhu, W. ACS Appl. Mater. Interfaces 2012, 4, 1822–1830.
54. Li, S. R.; Lee, C. P.; Kuo, H. T.; Ho, K. C.; Sun, S. S. Chem. Eur. J. 2012, 18, 12085–12095.
55. Mohanakrishnan, A. K.; Hucke, A.; Lyon, M. A.; Lakshmikantham, M. V.; Cava, M. P. Tetrahedron, 1999, 55, 11745–11754.
56. Wood, C. J.; Robson, K. C. D.; Elliott, P. I. P.; Berlinguette, C. P.; Gibson, E. A. RSC Adv. 2014, 4, 5782–5791.
57. Herbivo, C.; Comel, A.; Kirsch, G.; Fonseca, A. M. C.; Belsley, M.; Raposo, M. M. M. Dyes and Pigments, 2010, 86, 217–226.
58. Cardona, M.; Li, W.; Kaifer, A. E.; Stockdale, D.; Bazan, G. C. Adv. Mater. 2011, 23, 2367–2371.
59. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Jr.,; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Gaussian, Inc. Wallingford CT 2010.
60. Lynch, B. J.; Fast, P. L.; Harris, M.; Truhlar, D. G. J. Phys. Chem. A 2000, 104, 4811–4815.
61. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378–6396.
62. Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54 , 724–728.
63. Chang, D. W.; Lee, H. J.; Kim, J. H.; Park, S. Y.; Park, S. M.; Dai, L.; Baek, J. B. Org. Lett. 2011, 13, 3880–3883.
64. An, P.; Yu, Z.; Lin, Q. Chem. Commun. 2013, 49, 9920–9922.
65. Lefebvre, J. F.; Sun, X. Z.; Calladine, J. A.; George, M. W.; Gibson, E. A. Chem. Commun. 2014, 50, 5258–5260.