| 研究生: |
蔡翊翔 I-Hsiang Tsai |
|---|---|
| 論文名稱: |
微波功率放大器線性度改善研究 A study of linearity improvement for microwave power amplifier |
| 指導教授: |
辛裕明
Yue-Ming Hsin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 線性度 、功率放大器 |
| 外文關鍵詞: | power amplifier, linearity |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要分為兩個部分,第一部份:利用量測砷化鎵異質接面雙極性電晶體的增益壓縮與相位漂移特性,經過公式轉換後取得描述電晶體非線性特性的輸出電壓之實部與虛部對輸入電壓的冪級數係數,再經過計算後用來預測電晶體在實際調變訊號(CDMA IS-95)下對於不同輸入功率的輸出頻譜特性以及鄰近通道功率比例。第二部份:利用0.5 μm pHEMT製程設計3.5 GHz線性化功率放大器,利用共閘級電晶體動態調整功率放大器的偏壓改善功率放大器的線性度。量測結果功率增益、輸出功率、最大功率附加效率分別為11 dB、29 dBm、31 %。0.18 μm CMOS製程設計2.4 GHz線性化功率放大器,利用前饋式元件提供二倍頻訊號消除的路徑改善功率放大器的線性度。量測結果功率增益、輸出功率、最大功率附加效率分別為16 dB、21 dBm、17 %;在輸出功率為12 dBm下,相對星座圖向量誤差量測結果為5.6 %,滿足IEEE 802.11 g系統的規格。
The research content divides into two parts: First, measured GaAs-based heterojunction bipolar transistor amplitude-to-amplitude (AM-AM) and amplitude-to-phase (AM-PM) characteristics. Obtain the power series coefficients of output voltage real part and image part versus input voltage to describe the transistor non-linear characteristics using a formulation. After calculation can prediction the transistors output spectrum characteristics and adjacent channel power ratio under different output power with a CDMA IS-95 signal. Secondly, a 3.5 GHz linearity power amplifier in WIN 0.5 μm pHEMT process, a common gate transistor can adjust power amplifier bias to improve linearity. The power amplifier exhibits power gain of 11 dB, saturation output power of 29 dBm, maximum power-added efficiency of 31 %. A 2.4 GHz linearity power amplifier in TSMC 0.18 μm CMOS process, the feed-forward device offer second harmonic signal injection route to improve linearity. The power amplifier exhibits power gain of 16 dB, saturation output power of 21 dBm, maximum power-added efficiency of 17 %. The measured error vector magnitude was 5.6 % under an output power of 12 dBm using 2.4 GHz IEEE 802.11 g OFDM 64-QAM signal.
[1]
IEEE std. 802.11a-1999, “Part11: wireless lan medium access control(MAC) and physical layer(PHY) specifications: high-speed physical layer in the 5 GHz band.” IEEE std. 802.11a-1999, Dec. 1999
[2]
IEEE std. 802.11gTM-2003, “Part 11: wireless lan medium access control(MAC) and physical layer(PHY) specifications amendment 4: further higher data rate extension in the 2.4 GHz band.” IEEE std. 802.11gTM-2003, pp.i-67, June 2003
[3]
Shingo Yamanouchi, Yuuichi Aoki, Kazuaki Kunihiro, Tomohisa Hirayama, Takashi Miyazaki, and Hikaru Hida, “Analysis and Design of a Dynamic Predistorter for WCDMA Handset Power Amplifiers,” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 55, NO. 3, MARCH 2007
[4]
Cheng-Chi Yen, and Huey-Ru Chuang, “A 0.25 um 20 dBm 2.4 GHz CMOS Power Amplifier With an Integrated Diode Linearizer,” IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 13, NO. 2, FEBRUARY 2003
[5]
Sangwon Ko, and Jenshan Lin, “A Novel Linearizer and a Fully Integrated CMOS Power Amplifier,” Asia-Pacific Microwave Conference, 2006
[6]
Hsien-Yuan Liao, Jhih-Hong Chen, Hwann-Kaeo Chiou, and Cheng-Chung Chen, “High-Linearity CMOS Feedforward Power Amplifier for WiMAX application,” Asia-Pacific Microwave Conference, 2008
[7]
陳聖寬, “順向回饋式寬頻功率放大器研製” 碩士論文, 國立台灣大學, 2001
[8]
Marian K. Kazimierczuk, “RF Power Amplifier” A John and Sons, Ltd., Publication, 2008
[9]
杜至庸, “線性化射頻功率放大器之數位基頻預失真技術之研究” 碩士論文, 國立中山大學, 2007
[10]
林世豪, “應用在WiMAX基地台高功率放大器之數位預失真線性化技術研究” 碩士論文, 國立中山大學, 2008
[11]
杜孟哲, “採用極座標調制之射頻發射機” 碩士論文, 國立中山大學, 2004
[12]
Steve C. Cripps, “RF Power Amplifiers for Wireless Communication” Artech House, Inc., 1999
[13]
Guillermo Gonzalez “ Microwave Transistor Amplifiers Analysis and Design ” Prentice-Hall, Inc., 1998
[14]
魏吉鴻, “微波積體化功率放大器設計及研製” 碩士論文, 國立中央大學, 2002
71
[15]
何岳龍, “高效率與線性度的功率放大器設計” 碩士論文, 國立中央大學, 2003
[16]
Kevin Gard, “Autocorrelation Analysis of Spectral Regrowth Generated by Nonlinear Circuit in Wireless Communication Systems,” PhD dissertation, UC SAN DIEGO, 2003
[17]
Joel H. K. Vuolevi, Timo Rahkonen, and Jani P. A. Manninen, “Measurement Technique for Characterizing Memory Effects in RF Power Amplifiers,” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 8, AUGUST 2001
[18]
Wang Huadong, Wu Zhengde, Bao Jinfu, and Tang Xiaohong, “Analyzing Memory Effect in RF Power Amplifier using Three-box Modeling,” Asia-Pacific Microwave Conference, 2005
[19]
Fan-Hsiu Huang, Hong-Yeh Chang, and Yi-Jen Chan, “A Linearity Improved GaAs pHEMT Power Amplifier using Common-Gate/Common-Source Circuit Topology,” European Microwave Integrated Circuits Conference, 2009
[20]
Chengzhou Wang, Mani Vaidyanathan, and Lawrence E. Larson, “A Capacitance-Compensation Technique for Improved Linearity in CMOS Class-AB Power Amplifiers,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 39, NO. 11, NOVEMBER 2004
[21]
Shigeo Kusunoki, Katsuji Kawakami, and Tadanaga Hatsugai, “Load-Impedance and Bias-Network Dependence of Power Amplifier With Second Harmonic Injection,” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 52, NO. 9, SEPTEMBER 2004
[22]
M. Miyashita, T. Okuda, H. Kurusu, S. Shimamura, S. Konishi, J. Udomoto, R. Matsushita, Y. Sasaki, S. Suzuki, T. Miura, M. Komaru and K Yamamoto,“ Fully Integrated GaAs HBT MMIC Power Amplifier Modules for 2.5/3.5-GHz-Band WiMAX Applications”, Compound Semiconductor Integrated Circuit Symposium, 2007
[23]
Amiza Rasmi, A. Marzuki, A. I. Abd Rahim , M. Razman Yahya, and A. Fatah Awang Mat, “A 3.5 GHz Medium Power Amplifier Using 0.15 μm GaAs PHEMT for WiMAX Applications,” Asia Pacific Microwave Conference, 2009
[24]
Chen-Kuo Chu, Hou-Kuei Huang, Hong-Zhi Liu, R. J. Chiu, Che-Hung Lin, Chih-Cheng Wang, Mau-Phon Houng, Yeong-Her Wang, Chuan-Chien Hsu, Wang Wu, Chang-Luen Wu and Chian-Sern Chang, “A fully matched high linearity 2-W PHEMT MMIC power amplifier for 3.5 GHz applications,” Microwave and Wireless Components Letters, IEEE , vol.15, no.10, pp. 667-669, Oct. 2005
72
[25]
Jongchan Kang, Jehyung Yoon, Kyoungjoon Min, Daekyu Yu, Joongjin Nam, Youngoo Yang, and Bumman Kim, “A Highly Linear and Efficient Differential CMOS Power Amplifier With Harmonic Control,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 41, NO. 6, JUNE 2006
[26]
Rimal Deep Singh, and Kyung-Wan Yu, “A Linear Mode CMOS Power Amplifier with Self-Linearizing Bias,” IEEE Asian Solid-State Circuits Conference, 2006
[27]
Jongchan Kang, Ali Hajimiri, and Bumman Kim, “A single-chip linear CMOS power amplifier for 2.4 GHz WLAN,” IEEE International Solid-State Circuits Conference, 2006
[28]
RTC6698H, in Richwave data sheet
[29]
ATR7032, “High Gain Power Amplifier for 802.11b/g WLAN Systems,” in Atmel data sheet
[30]
T7031, “2.4 GHz SiGe ower Amplifier for 802.11b/g WLAN Systems,” in Atmel data sheet
[31]
AWL6951, “2.4/5 GHz 802.11a/b/g/n WLAN Power Amplifier,” inAnadigics data sheet
[32]
AWL9224, “2.4 GHz 802.11b/g WLAN Power Amplifier,” inAnadigics data sheet
[33]
AWL9924, “2.4/5 GHz 802.11a/b/g WLAN Power Amplifier,” inAnadigics data sheet