跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳俐雯
Li-Wen Chen
論文名稱: 下行非正交多重接取具波束合成結構下之使用者選擇與分群演算法設計
User Selection and Grouping Algorithm Design for Beamforming in Downlink NOMA Systems
指導教授: 陳永芳
Yung-Fang Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 43
中文關鍵詞: 正交分頻多工功率配置使用者選擇強制歸凌波束合成
外文關鍵詞: NOMA, power allocation, user selection, ZFBF
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文針對以多傳送天線非正交多重接取具波束合成系統,提出使用者的選擇與分組演算法,讓系統總容量接近最佳解。另外我們還提出了在不同波束間的功率配置,更進一步提升系統的表現。
    首先,使用者的選擇與分組方面,我們設計了一種疊代的方案,將使用者組合動態的調整以達到最大的系統總容量。另外,我們提出的疊代方案,也可以使用在別使用者選擇方法上以提升系統容量,也就是說不論起始的使用者選擇與分組如何,都可以透過套用我們提出的疊代方法來達到更好的系統表現。再者,我們提出了波束間的功率配置藉著改變功率因數以提升整個系統的效能。模擬結果顯示,我們提出的疊代方案可以接近最佳解,而計算複雜度也低於最佳解,如果以不同的初始分組加上我們提出的方案,也可以較原本表現得更好。此外,功率配置方面也得到了比原先更好的系統總容量。


    This thesis we propose a kind of grouping algorithm to let the sum capacity close to the optimal solution for a BF-NOMA system. In addition, we also propose the power allocation scheme between the different beams, to further enhance the performance of the system. First, we design an iterative scheme for user grouping. The paired users are adjusted dynamically to achieve the maximum system throughput. Otherwise, we propose method can also be used in other user selection methods to enhance the system sum capacity. In the other words, we can apply the proposed iteration method to achieve better system performance when we use the other user selection as the initial group. Furthermore, we propose a power allocation scheme between the beams by varying the power factor to improve the overall system performance. The simulation results show that the proposed scheme is very close to the optimal solution with a greedy search while the computational complexity is reduced. If we use a different initial group with the proposed iteration program, it can also perform outperforms the existing algorithms. The performance of use power allocation scheme is better than unused.

    論文摘要 i Abstract ii Contents iv List of Figures vi List of Tables vii Chapter1. Introduction - 1 - 1.1. NOMA System - 1 - 1.2. Multiple-Input multiple-output - 2 - 1.3. Zero-Forcing Beamforming - 3 - 1.4. Review of Literature - 3 - 1.5. Contribution - 4 - 1.6. Organization - 5 - 1.7. List of Abbreviations - 6 - Chapter2. System Model and Problem Formulation - 7 - 2.1. System Model - 7 - 2.2. Problem Formulation - 12 - Chapter3. User Grouping Scheme and Power Allocation Scheme - 14 - 3.1. Grouping Scheme - 14 - 3.2. Power Allocation Scheme - 18 - 3.3. Computational Complexity of User Grouping - 22 - Chapter4. Simulation - 23 - 4.1. Simulation Model - 23 - 4.2. Simulation Result - 24 - Chapter5. Conclusion - 30 - Reference - 31 -

    [1] J. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. Soong, and J. Zhang, “What will 5G be?” IEEE J. Select. Areas Commun., vol. 32, no. 6, pp. 1065–1082, June 2014.
    [2] G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Ktenas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag., vol. 52, no. 2, pp. 97–105, Feb. 2014.
    [3] X. Xiong, W. Xiang, K. Zheng, H. Shen, and X. Wei, “Scenarios, Requirements and KPIs for 5G Mobile and Wireless System (deliverable D1.1),” IEEE Wireless Communications. Vol.22, pp, 24-32, May 2013.
    [4] L. Dai, B. Wang, Y. Yuan, S. Han, C. Lin I, and Z. Wang, “Non-Orthogonal Multiple Access for 5G: Solutions, Challenges, Opportunities, and Future Research Trends,” IEEE Communications Magazine. Vol.53, pp. 74-81, Sep 2015.
    [5] E. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur. Trans. Telecommun., vol. 10, pp. 585-598, 1999.
    [6] S. Venkatesan and H. Huang, "System capacity evaluation of multiple antenna systems using beamforming and dirty paper coding" Bell Labs.
    [7] W. Liu, S. Han and C. Yang, “Hybrid cooperative transmission in heterogeneous networks,” IEEE 23rd International Symposium on PIMRC. pp. 921-925, Nov 2012.
    [8] Z. Shen, R. Chen, l. G. Andrews, R. W. Heath, B. L. Evans, “Low complexity user selection algorithms for multiuser MIMO systems with block diagonalization,” IEEE Transactions on Signal Processing, vol.54, pp. 3658-3663, Sep. 2006.
    [9] T. Yoo, A. Goldsmith. “On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming,” IEEE Journal, vol.24, pp. 528-541, Mar. 2006.
    [10] B. Kimy, S. Lim, H. Kim, S. Suh, J. Kwun, S. Choi, C. Lee, S. Lee and D. Hong, “Non-orthogonal Multiple Access in a Downlink Multiuser Beamforming System,” IEEE Military Communications Conference. pp. 1278-1283, Nov 2013.
    [11] T. Yoo, N. Jindal, A. Goldsmith, “Multi-Antenna Downlink Channels with Limited Feedback and User Selection,” Selected Areas in Communications, IEEE Journal, vol.25, no.7, pp.1478-1491, Sep. 2007.
    [12] N. Chayat, “Updated submission template for TGa – revision 2,” Doc. IEEE 802.11-98/156r2, Apr. 1998.
    [13] S. Tomida and K. Higuchi, “Non-orthogonal Access with SIC in Cellular Downlink for User Fairness Enhancement,” Intelligent Signal Processing and Communications Systems (ISPACS), 2011 International Symposium on, pp.1-6, Dec. 7-9, 2011.
    [14] Evolved Universal Terrestrial Radio Access (E-UTRA); Further advancements for E-UTRA physical layer aspects (Release 9), 3GPP, TS 36.814 V9.0.0, Mar. 2010.
    [15] Evolved Universal Terrestrial Radio Access (E-UTRA); Mobility enhancements in heterogeneous networks, 3GPP TR 36.839V11.1.0, 2012.

    QR CODE
    :::