跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許瀚元
Han-Yuan Hsu
論文名稱: 低複雜度高效率HEVC畫面內編碼之研究
Low Computational Complexity, High Coding Efficiency Intra Prediction for HEVC
指導教授: 林銀議
Yin-Yi Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 104
中文關鍵詞: HEVC編碼單元預測單元支持向量機RDORMD
外文關鍵詞: HEVC, CU, PU, Intra Prediction, SVM, RDO
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 新一代的視訊編碼標準HEVC(High Efficiency Video Coding),編碼效率相較先前的視訊編碼標準H.264/AVC 提升許多。HEVC 的編碼單元(Coding Unit, CU)採用了四分樹(Quad-Tree)的編碼架構,提供四種大小的編碼區塊以適應畫面複雜度,在編碼單元中又包含了預測單元(Prediction Unit, PU)與轉換單元(Transform Unit, TU),在預測單元中,使用了35 個模式來進行預測來達到更精準的預測,但也大幅地增加其計算複雜度。因此在編碼單元中,本論文提出一支持向量機(Support Vector Machine, SVM)應用於編碼單元之快速深度決策演算法, 並利用位元- 失真最佳化(Rate-Distortion Optimization)程序中所得之RDO 失真成本,擷取其中最小值與門檻值比較是否繼續向下切割;而在預測單元的模式決策中,HEVC將進行約略模式決策(Rough Mode Decision, RMD)依據不同預測單元區塊大小選出8、8、3、3、3 個候選模式加上最有可能模式(Most Probable Mode, MPM)進行RDO程序,我們將RDO 程序中各候選模式的SATD 成本參數與該預測單元最小的SATD 成本參數比較,若其比例大於門檻值,即刪去該候選模式,以減少編碼所需時間,而此門檻值與量化參數及區塊大小有關。實驗結果顯示,相較原版,我們所提出的演算法平均可節省大約22%的整體編碼時間,而平均BDBR 上升不到0.1%,幾乎可以忽略。


    High efficiency video coding (HEVC) is the latest standard for video compression, which can achieve significant improvements on coding efficiency. HEVC adopted quad-tree based coding unit (CU) which provides four kinds of block size for characteristics of video. CU contains Prediction Unit (PU) and Transform Unit (TU). To improve intra coding efficiency, using 35 prediction modes in PU. However, HEVC encoder complexity is tremendously increased. Hence, in this paper, we proposed a SVM based fast intra CU depth decision algorithm and utilize the minimum Rate-distortion Cost (RD Cost) to develop the criterion of CU early termination under SVM based algorithm. HEVC adopt RMD algorithm which select 8, 8, 3, 3, 3 modes for candidates list in different PU size. In our intra mode decision, the modes with larger SATD Cost are removed from candidate list of RDO process. The threshold is adaptive by block size and QP. The experimental results show that our proposed algorithm
    achieves 22% time saving on average, with 0.09% BD-rate increase.

    第一章 緒論 1 1.1 高效率視訊編碼(HEVC)簡介 1 1.2 高效率視訊編碼(HEVC)編碼架構 1 1.3 研究動機與目的 5 1.4 論文架構 5 第二章 HEVC畫面內編碼介紹 6 2.1 畫面內預測模式介紹 6 2.2 畫面內預測編碼 9 第三章 HEVC編碼單元(CU)快速深度決策演算法 13 3.1 支持向量機 13 3.2 編碼單元快速深度決策相關文獻回顧 16 3.3 改良型支持向量機應用於編碼單元之快速深度決策演算法 22 3.4 以RDO 成本參數降低編碼單元運算複雜度 37 第四章 畫面內預測快速模式決策演算法 50 4.1 畫面內預測快速模式決策相關文獻回顧 50 4.2 畫面內預測快速模式決策演算法 58 4.3 合併畫面內預測編碼單元深度及模式快速決策演算法 72 第五章 結論與未來展望 87 參考文獻 89

    [1] “Generic coding of moving pictures and associated audio information,”
    ISO/IEC 13818-2: Video (MPEG-2), May 1996.
    [2] “Video coding for low bit rate communication, version 1,” ITU-T
    recommendation H.263, 1995.
    [3] T. Wiegand, G. J. Sullivan, G. Bjontegaard and A. Luthra, “Overview of
    the H.264/AVC video coding standard,” IEEE Transactions on Circuits
    and Systems for Video Technology, vol. 13, pp. 560-576, Jul. 2003.
    [4] B. Bross, W.-J. Han, G. J. Sullivan, J.-R. Ohm, and T. Wiegand, High
    Efficiency Video Coding (HEVC) Text Specification Draft 9, document
    JCTVC-K1003, ITU-T/ISO/IEC Joint Collaborative Team on Video
    Coding (JCT-VC), Oct. 2012.
    [5] A. Saxena and F. C. Fernandes, “DCT/DST-Based Transform Coding or
    Intra Prediction in Image/Video Coding”, IEEE Transactions on Image
    Processing, vol. 22, No. 10, Oct. 2013.
    [6] Shang-En Huang, “Low Computation Complexity for HEVC Intra
    Prediction with Support Vector Machine”, Master Thesis, National Central
    University, Jun. 2015
    [7] B. Bross, W. J. Han, J. R. Ohmn, G. J. Sullivan and T. Wiegand, “WD4:
    Working Draft 4 of High-Efficiency Video Coding”, JCTVC-F800, Torino,
    Italy, Jul. 2011.
    [8] J. Min, S. Lee, I. Kim, W. J. Han, J. Lainema, and K. Ugur, “Unification of
    the directional intra prediction methods in TMuC”, JCTVC-B100, Geneva,
    CH, 21-28 Jul. 2010
    [9] J. Lainema, F. Bossen, W-J Han, J. Min and K. Ugur, “Intra Coding of the
    HEVC Standard,” IEEE Transactions on Circuits and Systems for Video
    Technology, vol. 22, no. 12, pp. 1792-1801, Dec. 2012.
    [10] C. Corinna and V. Vapnik, “Support-vector networks. Mach Learn 20(3),”
    pp. 273-297, 1995.
    [11]Yang Wang, Xiaopeng Fan, Liang Zhao, Siwei Ma, Debin Zhao, Wen Gao,
    “A Fast intra coding algorithm for HEVC”, IEEE International Conference
    on Image Processing (ICIP), 10.1109/ICIP.2014.7025836, Oct.2014
    [12] Liquan Shen, Zhaoyang Zhang, Ping An, “Fast CU Size Decision and
    Mode Decision Algorithm for HEVC Intra Coding”, IEEE Transactions
    on Consumer Electronics, vol. 59, no 1, Feb.2013
    [13] Chang-Yi Chen, “Low-Complexity Intra Prediction for HEVC”, Master
    Thesis, National Central University, Jun. 2014
    [14] LIBSVM -- A Library for Support Vector,
    Machineshttp://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html
    [15]G. Bjontegarrd, “Calculation of average PSNR differences between RD
    curves,“ in ITU-T SC16/Q6 13th VCEG meeting, No.VCEG-M33, Austin,
    TX, Apr. 2001
    [16]Yu-Ru Tsai, “Hadamard Cost based Fast CU Decision Algorithm for
    HEVC Intra Coding”, Master Thesis, National Central University, Jun.
    2015
    [17] C. M. Fang, Y. T. Chang and W. H. Chung, “Fast Intra Mode Decision for
    HEVC Based on Direction Energy Distribution,” in proceeding of
    IEEE International Symposium on Consumer Electronics, Jun. 2013, pp.
    61-62
    [18]W. Jiang, H. Ma and Y. Chen, “Gradient Based Fast Mode Decision
    Algorithm for Intra Prediction in HEVC,” in proceeding of
    IEEE International Consumer Electronics, Communications and
    Networks, Apr. 2012, pp. 1836-1840

    QR CODE
    :::