跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳瑞永
Jui-Yung Chen
論文名稱: 含單一粉土層的土層液化分析
Liquefaction assessment of the soil stratum with a thin silt layer
指導教授: 陳慧慈
Huei-Tsyr Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 120
中文關鍵詞: 多孔介質應力分析粉土層土壤液化
外文關鍵詞: nonlinear analysis, soil liquefaction, thin silt layer
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究應用一套以Biot多孔介質變形理論為基礎,非線性行為以帽蓋模式及Pacheco孔隙水壓模式為架構,搭配黏滯邊界元素之三維有限元素分析程式,設計一系列含單一粉土夾層的砂質土層模型進行數值分析,藉以探討不同粉土層位置及其厚度對整體液化行為之影響。
    研究結果顯示:(1)若砂土層中含單一粉土夾層時,粉土層之存在可縮小達液化之範圍,並減小沉陷量;(2)若粉土夾層位置接近地表,則粉土層下方之土層,因孔隙水無法傳遞,故粉土層下方易累積過量之超額孔隙水壓,非但容易產生砂湧,更延長了整體土層之水壓消散時間,造成土層於振動後不穩定時間長;(3)若粉土夾層位置於較深層,則上述之狀況可有明顯的改善。


    In this study, an effective stress based three dimensional finite element model is adopted to investigate the ground motion of a sandy deposits with a thin silt intra-layer at various depths. The nonlinearity of soil is assumed to follow the Cap model, and the pore pressure model based on Cap model, developed by Pacheco, is adopted to simulate the built-up of the pore pressure.
    The conclusion drawn from this studies are as follow: (a) the thin silt intra-layer in the sand deposit can reduce the extent of liquefaction and the surface settlement; (b) liquefaction occurs only in the sand beneath the thin silt layers near the surface. The ratio of the excess pore water pressure is larger than one in the sand just beneath the silt layer; (c) for the deeper thin silt intra-layer, liquefaction occurs not only in the sand beneath the thin silt layers but also in the sand near the surface; (d) the sand deposits with shallower thin silt intra-layer is danger.

    目錄 i 表目錄 iv 圖目錄 v 第一章 序論 1 1-1 研究背景 1 1-2 研究目的與方法 2 1-3 文獻回顧 2 1-3-1 多孔介質應力分析 2 1-3-2 砂土層含沉泥層之液化研究 6 1-4 論文內容 8 第二章 理論背景與分析流程 9 2-1 前言 9 2-2 有效應力形式 9 2-3 系統控制方程 10 2-4 系統控制方程之有限元素形式 13 2-5 邊界處理 16 2-6 土壤非線性模式 18 2-7 孔隙水壓模式 20 2-8 分析流程 22 第三章 程式驗證及參數探討 25 3-1 前言 25 3-2 程式驗證及適用性說明 25 3-2-1 一維分析之驗證 25 3-2-2 實測結果驗證之說明 26 3-3 與動態離心模型試驗結果比較之探討 27 3-3-1 動態離心模型試驗概述 27 3-3-2 程式之數值模擬網格及輸入參數說明 28 3-3-3 程式之數值模擬結果與討論 29 第四章 案例研究 31 4-1 前言 31 4-2 輸入地震與分析模型簡介 31 4-3 純砂土模型於地震力作用下之液化行為探討 33 4-4 單一粉土層位置對液化之影響 34 4-5 單一粉土層厚度對液化之影響 39 第五章 結論與建議 43 5-1 結論 43 5-2 建議 44 參考文獻 46

    1. 周健捷,「樁基礎橋樑地震反應分析之研究」,國立中央大學土木工程學系,博士論文,民國89年。
    2. Biot, M. A., “Mechanics of Deformation and Acoustic Propagation in Porous Media”, Journal of Applied Physics, Vol.33, pp.483-1498, 1962.
    3. Seed, H.B. “Evaluation of soil liquefaction effects on level ground during earthquakes”, Annual Convention and Exposition, Liquefaction Problems in Geotechnical Engineering, ASCE,Philadelphia, 1976.
    4. Castro, G. and Polulos, S.J., “Factor affection liquefaction and cyclic mobility”, Annual Convention and Exposition, Liquefaction Problems in Geotechnical Engineering, ASCE, Philadelphia, 1976.
    5. Seed, H.B. and Lee, K.L., “Liquefaction of saturated sand during cyclic loadings”, Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.92, SM6, pp105-134, 1966.
    6. Seed, H.B. and Idress, I.M., “Simplified procedure for evaluation for level ground during earthquakes”, Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.97, No.11, pp1249-1273, 1977.
    7. Dikmen, S.U. and Ghaboussi, J., “Effective stress analysis of seismic response and liquefaction theory”, Journal of Geotechnical Engineer Division, ASCE, Vol.110, pp.628-644, 1984.
    8. Finn, W.D. and Martin, P.P., “Seismic response and liquefaction of sand”, Journal of the Geotechnical engineer division, ASCE, Vol.102, pp847-856, 1976.
    9. Seed, H.B, Martin, P.P. and Lysmer, J., “Pore-water pressure changes during soil liquefaction”, Journal of the Geotechnical Engineer Division, ASCE, Vol.102, pp323-346, 1976.
    10. Ghaboussi, J. and Wilson, E.L., “Variation formulation of dynamics of fluid-saturated porous elastic solid”, Journal of the Engineer Mechanics Division, ASCE, Vol.98, EM4, pp947-963, 1972.
    11. Ghaboussi, J. and Wilson, E.L., “Seismic analysis of earth dam reservoir systems”, Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.99, pp849-862, 1972.
    12. Zienkiewicz, O.C., Chang, C.T. and Pastor, M., “Simple models for soil behaviour and applications to problems of soil liquefaction”, Numerical Method in Geomechanics, Swoboda, Balkema, Rotterdam, 1988.
    13. Ghaboussi, J. and Dikmen, S.U., “Liquefaction analysis of horizontally layered sand”, Journal of the Geotechnical Engineer Division, ASCE, Vol.104, pp343-356, 1978.
    14. Zienkiewicz, O. C., Leung, K. H. and Pastor, M., “Simple model for transient soil loading in earthquake analysis I basic model and its application”, International Journal for Numerical and Analytical Method in Geomechanics, Vol.9, pp453-476, 1985.
    15. Zienkiewicz, O. C., Leung, K. H. and Pastor, M., “Simple model for transient soil loading in earthquake analysis II non-associative models for sands”, International Journal for Numerical and Analytical Method in Geomechanics, Vol.9, pp477-498, 1985.
    16. Prevost, J.H., “Nonlinear transient phenomena in saturated porous media”, Computer Methods applied Mechanics and Engineering, Vol.30, pp3-18, 1982.
    17. Akiyoshi, T., Fuchida, K. and Fang, L., “Absorbing boundary conditions for dynamic analysis of fluid-saturted porous media”, Soil Dynamics and Earthquake Engineering, Vol.13, pp387-397, 1994.
    18. Kokusho, T., “Water film in liquefied sand and its effect on lateral spread”, Journal of Geotechnical and Geoenvironmental Engineering, Vol.125, No.10, pp817-826, 1999.
    19. Kokusho, T., “Mechanism for water film generation and lateral flow in liquefied sand layer”, Soils and Foundations, Vol.40, No.5, pp99-111, 2000.
    20. Brennan, A.J. and Madabhushi, S.P.G., “Liquefaction and drainage in stratified soil”, Journal of Geotechnical and Geoenvironmental Engineering, Vol.131, No.7, pp876-885, 2005.
    21. 山口晶,吉田望,飛田善雄,「再液状化メカニズムに関する実験的研究」,日本地震工学会論文集, Vol.8, No.3 ,PP.46-62,(2008)。
    22. 連紘震,「動態離心模型試驗探討含薄沉泥夾層的砂層之液化機制」,國立中央大學土木工程學系,碩士論文,民國99年。
    23. Brennan, A. J. and Madabhushi, S.P.G., “Liquefaction and drainage in stratified soil”, Journal of Geotechical and Geoenvironmental Engineering, Vol.131, No.7, pp.876-885, 2005.
    24. Pacheco, M. P., Altschaeffl, A. G. and Chameau, J. L., “Pore pressure predictions in finite element analysis”, International Journal for Numerical and Analytical Method in Geomechanics, Vol.13, pp.477-491, 1989.
    25. 黃俊才,「考慮地震引致地下水位變動的土壤結構互制分析」,國立中央大學土木工程學系,博士論文,民國83年。
    26. Rolandw, L. and Bernard, A. S., “The finite element method in the deformation and consolidation of porous media”, Wiley, New York, Chapter2, p13-16, 1987.
    27. Simon, B. R., Zienkiewicz, O. C. and Paul, D. K., “Evaluaion of U-W and U-Π finite element method for the dynamic response of saturated porous media using one-dimension model”, International Journal for Numerical and Analytical Method in Geomechanics, Vol.10, pp.461-482, 1986.
    28. Zeinkiewicz, O. C. and Shiomi, T., “Dynamic behaviour of saturated porous media; The generalized Biot formulation and its numerical solution”, International Journal for Numerical and Analytical Method in Geomechanics, Vol.8, pp.71-96, 1984.
    29. Chen, W. F. and Baladi, G. Y., Soil plasticity and implementation, Elsevier Science Publishing Co., New York, 1985.
    30. Owen, D. R. J. and Hinton, E., Finite elements in plasticity: Theory and pratice., Pineridge Press Limited., Swansea U.K., 1980.
    31. 陳文浩,「利用連續壁防治土壤液化之探討」,國立中央大學土木工程學系,碩士論文,民國90年。

    QR CODE
    :::