跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊詔宇
Chao-Yu Yang
論文名稱: 藉由錫與銀的合金化增益酸性環境下鉑奈米棒之乙醇氧化反應
Enhancement of Ethanol Oxidation Reaction in Acidic Media of Pt Nanorods through Sn and Ag Alloying
指導教授: 王冠文
Kuan-Wen Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 72
中文關鍵詞: 鉑錫銀乙醇氧化反應奈米棒雙功能機制去合金化過程長寬比
外文關鍵詞: PtSnAg, ethanol oxidation reaction, nanorods, bi-functional mechanism, dealloying process, aspect ratios
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了要增益白金基催化劑之乙醇氧化反應(ethanol oxidation reaction, EOR)活性,本研究製備具有不同程度親氧性之鉑基二元與三元包含鉑金、鉑銀、鉑錫和鉑錫銀奈米棒(nanorods, NRs),並探討一維結構及去合金效應對三元鉑錫銀奈米棒之EOR活性的增益。所製備觸媒之結構、表面組成、化學組成、形貌、電化學性質分析可藉由X光繞射儀(X-ray diffraction, XRD),光電子能譜儀(X-ray photoelectron spectroscopy, XPS),感應耦合電漿原子發射光譜分析儀(inductively coupled plasma-atomic emission spectrometer),高解析度穿透式電子顯微鏡(high resolution transmission electron microscopy, HRTEM),循環伏安法(cyclic voltammetry, CV)等儀器鑑定。
    研究結果分為三個部分,第一部分以甲酸還原法製備長寬比約2.7的碳支撐鉑基二元和三元奈米棒。在EOR的結果中,PtSnAg在0.6 V擁有最高的電流值,說明PtSnAg表面的氧化物可藉由雙功能機制(bi-functional mechanism)來促進乙醇解離吸附於鉑表面和CO的氧化,並進一步提升EOR活性。此外,根據常溫下計時伏安法(chronoamperometric, CA)的結果,PtSnAg觸媒相較於其他觸媒仍展現了最佳的活性與穩定性,這可歸因於觸媒表面的含氧物質像是PtOx、SnO2和銀的合金化效應。
    第二部分則是利用去合金法進一步提升PtSnAg的活性。經過5圈的去合金化過程後,PtSnAg的電化學表面積可增益至3倍,這是因為Ag會部分溶解使得鉑的活性位置數量增加。此外,PtSnAg在去合金化10圈後展現了最佳的EOR活性與穩定性,或許可以歸因表面Pt/Sn/Ag組成的最佳化。
    第三部分是用不同溫度製備長寬比分別為7.2,5.7,2.7的碳支撐PtSnAg奈米棒,並命名為PtSnAg-5 oC,PtSnAg-15 oC和PtSnAg-RT。在EOR活性結果中,PtSnAg-5 oC在0.6 V的活性約為PtSnAg-15 oC和PtSnAg-RT的1.2與2.1倍。此外,經過2小時的CA測試後,在PtSnAg-5 oC之奈米棒顯示了最佳的穩定性,此結果可歸因於此奈米棒有較高的長寬比與表面氧化物以利去除COads和CHx。由第二第三部分的研究結果可以發現,控制形貌比起去合金更能有效提升PtSnAg之EOR性能。


    In order to prepare Pt-based catalysts with high ethanol oxidation reaction (EOR) performance, binary and ternary nanorods (NRs) including PtAu, PtAg, PtSn, and PtSnAg with different degrees of oxophilicity is systematically elucidated. Besides, the effect of dealloying and one-dimentional (1-D) structures on the EOR performance of ternary PrSnAg NRs has been studied. The structures, surface compositions, chemical compositions, morphologies and electrochemical properties of prepared catalysts are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma-atomic emission spectrometer (ICP-AES), high resolution transmission electron microscopy (HRTEM), and cyclic voltammetry (CV) technique, respectively.
    This study is divided into three parts. In the first part, the carbon-supported Pt-based binary and ternary NRs with an aspect ratio of about 2.7 are prepared via formic acid method. In EOR results, the current density of PtSnAg at 0.6 V is the highest, suggesting the surface oxides in PtSnAg can improve EOR activity by promotion of dissociative adsorption of ethanol on Pt surface and the CO oxidation reaction through bi-functional mechanism. Moreover, chronoamperometric (CA) results obtained at ambient temperature show that ternary PtSnAg catalyst have the highest current density and stability among all samples, attributed to the surface oxygen containing species (OCS) such as PtOx, and SnO2 and Ag alloying effect.
    In the second part, the dealloying process has been used to further improve the activity of the PtSnAg catalysts. After dealloying process of 5 cycles, the electrochemical surface area of PtSnAg can be enhanced about 3 folds, owing to Ag partial dissolution and the increase in the number of Pt active sites. Besides, the PtSnAg after dealloying of 10 cycles has the best EOR performance and durability, maybe attributed to the optimized surface Pt/Sn/Ag compositions.
    In the third part, the PtSnAg/C NRs with an aspect ratio of 7.2, 5.7, and 2.7 have been prepared at different temperatures (named as PtSnAg-5, PtSnAg-15 oC, and PtSnAg-RT, respectively). For the EOR performance of PtSnAg/C catalysts with different aspect ratios, the current density of PtSnAg-5 oC at 0.6 V is about 1.2 and 2.1 times higher than that of PtSnAg-15 oC and PtSnAg-RT. Besides, after CA test for 2 h, NRs prepared at 5 oC display the best durability, because the synergic effect of the higher aspect ratio and surface oxide can remove the COads and CHx. Compared the results in parts 2 and 3, it seems that morphologies control is more effective than the dealloying to promote the EOR performance of PtSnAg.

    Table of Contents 摘要 i Abstract iii Table of Contents v List of Figures viii List of Tables xi Chapter I Introduction 1 1.1 The EOR mechanism of Pt in acid solution 2 1.2 Pt-based catalysts 5 1.3 The design of 1-D structure for EOR 8 1.4 The effect of dealloying process 11 1.5 Motivation and approach 12 Chapter II Experimental Section 13 2.1 Preparation of carbon-supported Pt-based binary and ternary NRs Catalysts 13 2.2 Dealloying of PtSnAg/C Catalysts 15 2.3 Preparation of PtSnAg/C NRs at Different Temperatures 17 2.4 Characterization of catalysts 19 2.4.1 Thermal gravimetric analysis (TGA) 19 2.4.2 Inductively coupled plasma-atomic emission spectrometer (ICP-AES) 19 2.4.3 High resolution transmission electron microscopy (HRTEM) 19 2.4.4 X-ray diffraction (XRD) 19 2.4.5 X-ray Photoelectron spectroscopy (XPS) 21 2.4.6 Electrochemical measurements 21 Chapter III Results and Discussion 23 3.1 The Structural and Electrochemical Properties of Pt-based Binary and Ternary NRs 23 3.1.1 HRTEM and XRD characterizations 23 3.1.2 XPS characterization 26 3.1.3 EOR activity 26 3.1.4 CA test 32 3.1.5 Summary 32 3.2 The Effect of Dealloying Process on the Electrochemical Performance of PtSnAg Catalysts 34 3.2.1 CV characterization of as-prepared and dealloyed PtSnAg 34 3.2.2 The EOR activity of as-prepared and dealloyed PtSnAg 34 3.2.3 The XPS characterization of as-prepared and dealloyed PtSnAg 38 3.2.4 The CA test of as-prepared and dealloyed PtSnAg 38 3.2.5 Summary 42 3.3 The structural and electrochemical characterizations of PtSnAg/C NRs with different aspect ratios 43 3.3.1 HRTEM characterization 43 3.3.2 XRD characterization 43 3.3.3 EOR activity 46 3.3.4 XPS characterization 46 3.3.5 CA test 50 3.3.6 Summary 50 Chapter IV Conclusions 54 Reference 56

    [1] A. Kirubakaran, S. Jain, and R. K. Nema, Renew. Sust. Energ. Rev 13 (2009) 2430-2440.
    [2] M. A. F. Akhairi and S. K. Kamarudin, Int. J. Hydrogen Energy 41 (2016) 4214-4228.
    [3] C. W. Liu, Y. W. Chang, Y. C. Wei, and K. W. Wang, Electrochim. Acta 56 (2011) 2574-2581.
    [4] W. Du, G. Yang, E. Wong, N. A. Deskins, A. I. Frenkel, D. Su, and X. Teng, J. Am. Chem. Soc 136 (2014) 10862-10865.
    [5] R. F. B. De Souza, L. S. Parreira, J. C. M. Silva, F. C. Simões, M. L. Calegaro, M. J. Giz, G. A. Camara, A. O. Neto, and M. C. Santos, Int. J. Hydrogen Energy 36 (2011) 11519-11527.
    [6] A. Kowal, M. Li, M. Shao, K. Sasaki, M. B. Vukmirovic, J. Zhang, N. S. Marinkovic, P. Liu, A. I. Frenkel, and R. R. Adzic, Nat. Mater. 8 (2009) 325-30.
    [7] E. A. de Souza, M. J. Giz, G. A. Camara, E. Antolini, and R. R. Passos, Electrochim. Acta 147 (2014) 483-489.
    [8] E. Antolini, ChemSusChem 6 (2013) 966-973.
    [9] H. Li, G. Sun, L. Cao, L. Jiang, and Q. Xin, Electrochim. Acta 52 (2007) 6622-6629.
    [10] S. G. Rodríguez, F. Somodi, I. Borbáth, J. L. Margitfalvi, M. A. Peña, J. L. G. Fierro, and S. Rojas, Appl. Catal. B-Environ. 91 (2009) 83-91.
    [11] M. Zhu, G. Sun, and Q. Xin, Electrochim. Acta 54 (2009) 1511-1518.
    [12] K. S. Lee, Y. H. Cho, T. Y. Jeon, S. J. Yoo, H. Y. Park, J. H. Jang, and Y. E. Sung, ACS Catal. 2 (2012) 739-745.
    [13] A. O. Neto, M. Linardi, D. M. dos Anjos, G. T. Filho, and E. V. Spinacé, J. Appl. Electrochem 39 (2009) 1153-1156.
    [14] D. R. M. Godoi, J. Perez, and H. M. Villullas, J. Power Sources 195 (2010) 3394-3401.
    [15] J. C. M. Silva, R. F. B. De Souza, L. S. Parreira, E. T. Neto, M. L. Calegaro, and M. C. Santos, Appl. Catal. B-Environ. 99 (2010) 265-271.
    [16] W. Zhou, M. Li, L. Zhang, and S. H. Chan, Electrochim. Acta 123 (2014) 233-239.
    [17] X. Cao, N. Wang, Y. Han, C. Gao, Y. Xu, M. Li, and Y. Shao, Nano Energy 12 (2015) 105-114.
    [18] S. M. Kim, Y. G. Jo, and S. Y. Lee, Electrochim. Acta 174 (2015) 1244-1252.
    [19] M. Li, A. Kowal, K. Sasaki, N. Marinkovic, D. Su, E. Korach, P. Liu, and R. R. Adzic, Electrochim. Acta 55 (2010) 4331-4338.
    [20] N. Erini, R. Loukrakpam, V. Petkov, E. A. Baranova, R. Yang, D. Teschner, Y. Huang, S. R. Brankovic, and P. Strasser, ACS Catal. 4 (2014) 1859-1867.
    [21] S. Beyhan, J. M. Léger, and F. Kadırgan, J. Power Sources 242 (2013) 503-509.
    [22] Y. C. Tseng, H. S. Chen, C. W. Liu, T. H. Yeh, and K. W. Wang, J. Mater. Chem. A, 2 (2014) 4270.
    [23] M. E. Scofield, C. Koenigsmann, L. Wang, H. Liu, and S. S. Wong, Energy Environ. Sci. 8 (2015) 350-363.
    [24] C. Koenigsmann and S. S. Wong, Energy Environ. Sci. 4 (2011) 1161-1176.
    [25] W. P. Zhou, M. Li, C. Koenigsmann, C. Ma, S. S. Wong, and R. R. Adzic, Electrochim. Acta 56 (2011) 9824-9830.
    [26] Y. T. Liang, C. W. Liu, H. S. Chen, T. J. Lin, C. Y. Yang, T. L. Chen, C. H. Lin, M. C. Tu, and K. W. Wang, RSC Adv. 5 (2015) 39205-39208.
    [27] D. Wang, Y. Yu, J. Zhu, S. Liu, D. A. Muller, and H. D. Abruna, Nano Lett. 15 (2015) 1343-8.
    [28] S. Koh and P. Strasser, J. Am. Chem. Soc. 129 (2007) 12624-12625.
    [29] S. Sun, F. Jaouen, and J. P. Dodelet, Adv. Mater. 20 (2008) 3900-3904.
    [30] Y. Ma, H. Wang, S. Ji, V. Linkov, and R. Wang, J. Power Sources 247 (2014) 142-150.
    [31] S. Sen, F. Sen, and G. Gokagac, Phys. Chem. Chem. Phys. 13 (2011) 6784-92.
    [32] C. W. Liu, Y. C. Wei, C. C. Liu, and K. W. Wang, J. Mater. Chem. 22 (2012) 4641.
    [33] Y. T. Liang, S. P. Lin, C. W. Liu, S. R. Chung, T. Y. Chen, J. H. Wang, and K. W. Wang, Chem. Commun. 51 (2015) 6605-8.
    [34] P. G. Corradini, E. Antolini, and J. Perez, J. Power Sources 275 (2015) 377-383.
    [35] S. Beyhan, J. M. Léger, and F. Kadırgan, Appl. Catal. B-Environ. 144 (2014) 66-74.
    [36] M. G. Balcázar, F. M. C. Muñiz, L. Á. Contreras, L. G. Arriaga, and J. L. García, J. Power Sources 197 (2012) 121-124.
    [37] B. Jin, H. Sun, M. Huang, and L. Zhao, Electrochim. Acta 142 (2014) 223-227.
    [38] D. H. Lim, D. H. Choi, W. D. Lee, and H. I. Lee, Appl. Catal. B-Environ. 89 (2009) 484-493.
    [39] S. Sun, G. Zhang, D. Geng, Y. Chen, M. N. Banis, R. Li, M. Cai, and X. Sun, Chem. Eur. J. 16 (2010) 829-35.
    [40] J. J. Lv, J. X. Feng, S. S. Li, Y. Y. Wang, A. J. Wang, Q. L. Zhang, J. R. Chen, and J. J. Feng, Electrochim. Acta 133 (2014) 407-413.

    QR CODE
    :::