跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王榆茜
Yu-cian Wang
論文名稱: 利用電子迴旋共振化學氣相沉積法沉積氫化非晶矽薄膜探討其應力與結晶行為
Stress and crystallization of hydrogenated amorphous silicon films grown by electron cyclotron resonance chemical vapor deposition
指導教授: 陳一塵
I-chen Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
畢業學年度: 99
語文別: 中文
論文頁數: 72
中文關鍵詞: 電子迴旋共振化學氣相沉積法、氫化非晶矽、R*、薄膜應力、氫含量、部分鈍化孔洞
外文關鍵詞: a-Si:H, ECRCVD, R*, stress, hydrogen content, crystallization
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以高頻之ECRCVD成長氫化非晶矽薄膜,具有低溫成膜性質及沉積速率較快等優勢,將有效降低製作元件成本。然而,氫化非晶矽薄膜為矽氫所組成,其結構相對於結晶矽鬆散,且矽氫鍵結斷裂形成缺陷,易發生光衰退效應,為提高薄膜穩定度使得元件壽命增加,故各國研究目標為將薄膜由非晶結構轉至微晶或多晶結構,調整SiH4與H2流量比例,直接成長微晶矽結構薄膜;或是經由熱處理使氫化非晶矽薄膜結晶化,得到多晶矽薄膜,以提升薄膜太陽能電池之效率與穩定度。
    本研究利用ECRCVD成長不同SiH4流量之薄膜,為要得到不同R* 薄膜,以了解其微結構對於薄膜在退火前後應力與結晶行為之影響。利用OM、FTIR、Raman、XRD與NMR分別利用Stoney Equation進行應力計算、Si-H與Si-H2之鍵結型為與氫含量計算、薄膜結晶率與中短程有序結構、結晶尺寸與結晶方向與氫分布之行為探討。在ECRCVD成長氫化非晶矽薄膜時,隨著流量上升,薄膜R*下降而氫含量上升,薄膜之壓縮應力與R*並非成比例之變化。因此我們提出一假設,認為具有氫鈍化的孔洞表面微薄膜中應力集中處,隨著R*上升,薄膜壓縮應力提高,然而當氫已無法全部鈍化孔洞表面時,這種被部分鈍化的孔洞反而成為應力釋放處,因此薄膜的壓縮應力下降。另一方面,在R*愈大的薄膜結晶速率愈慢,是因其薄膜內部氫分布較為鬆散且空孔密度大有機會使其孕核時的障壁能提高。


    Due to its high mobility and high stability under light soaking, polycrystalline silicon (Poly-Si) is a promising material candidate for thin film solar cells and transistors. Solid phase crystallization (SPC) of hydrogenated amorphous silicon (a-Si:H) is a simple and attractive method to fabricate poly-Si at a low temperature. However, the evolution of stress and hydrogen effusion of a-Si:H films during SPC have not been well-understood.
    In this study, the relationship between the stress and crystallization behavior of the annealed films were investigated. a-Si:H thin films with various microstructure parameter (R*) values were prepared using electron cyclotron resonance chemical vapor deposition (ECRCVD) by adjusting the feed gas ratio. The crystallization of the a-Si:H films were then carried out by the thermal annealing process at a temperature range from 200 °C to 800 °C under nitrogen ambient. The microstructure properties of the films were evaluated using Raman spectroscope, scanning electron microscope and Infrared spectroscope. From our experimental results, the as-grown sample with R* = 0.54 may have largest compressive stress. After annealing above 300 °C, the film stress is changed to tensile stress due to hydrogen effusion, and reaches a maximum around 400 °C. Different mechanisms of stress formation and relaxation, such as bond reconstruction and microstructure evolution during crystallization at higher temperatures were also discussed.

    摘要 i Abstract ii 致謝 iii 目錄 v 圖目錄 viii 表目錄 1 第一章 前言 2 第二章 文獻回顧與理論背景 4 2.1 元件發展情況 4 2.1.1 薄膜太陽能電池發展概況 4 2.1.2 薄膜電晶體發展 5 2.2 氫化非晶矽薄膜之特性 7 2.2.1 氫化非晶矽薄膜之製備 7 2.2.2 氫化非晶矽薄膜之結構 8 2.2.3 氫化非晶矽薄膜之矽氫鍵結 10 2.2.4 氫化非晶矽薄膜光學性質 12 2.2.5 氫化非晶矽薄膜沉積條件與應力之關係 14 2.3 氫化非晶矽薄膜結晶化之方法 15 2.3.1 準分子雷射退火法(ELA) 16 2.3.2快速熱退火法(RTA) 17 2.3.3 高溫管型爐退火法(FA) 18 2.3 結晶行為之成核與成長動力學之理論 19 2.3.1 成核與成長之動力學參數 19 2.3.2 孕核時間 21 2.3.3 成核速率與成長速率 22 2.4 微結構在退火過程與結晶行為之變化 23 2.4.1退火溫度與時間的影響 23 2.4.2 氫含量與分佈的影響 25 2.4.3 缺陷與空孔分佈 28 2.4.4 薄膜應力分析 29 2.4.5 矽-矽四面體鍵角之變化 30 第三章 實驗步驟 32 3.1 製備氫化非晶矽薄膜 32 3.2 沉積氫化非晶矽薄膜的鍍率 32 3.3 熱處理氫化非晶矽薄膜 33 3.4 熱處理前後薄膜特性分析 34 3.4.1傅立葉轉換紅外線光譜 (Fourier Transform Infrared Spectrometry) 34 3.4.2 拉曼光譜儀 (Raman Spectroscopy) 34 3.4.3 光學顯微鏡 (Optical Microscope) 35 3.4.4 核磁共振頻譜 (Nuclear Magnetic Resonance Spectroscopy, NMR) 35 3.4.5 X光繞射儀 (X-ray diffraction, XRD) 35 第四章 結果與討論 37 4.1 不同成長條件的氫化非晶矽薄膜性質 37 4.2氫化非晶矽薄膜退火過程性質變化 39 4.2.1 退火過程前後氫化非晶矽薄膜應力 40 4.2.2退火過程中內部結構之變化 42 4.3 氫化非晶矽薄膜之結晶化行為 46 4.3.1 溫度效應與熱力學行為之探討 46 4.3.2 薄膜內部氫分佈對結晶行為之影響 51 第五章 結論 53 參考文獻 54

    [1] J. J. Loferski, J. Appl. Phys. 27, 777 (1956).
    [2] M. A. GreenPhysica E 14, 65 (2002)
    [3] Martin Helgesen, Roar Søndergaard and Frederik C. Krebs, J. Mater. Chem. 20, 36 (2010)
    [4] M. A. Green, Prog. Photovoltaics 9, 123 (2001).
    [5] H. F. Sterling and R. G. C. Swann, Solid-State Electron. 8, 653 (1965).
    [6] R. C. Chittick, J. H. Alexander, and H. F. Sterling, J. Electrochem. Soc. 116, 77 (1969).
    [7] A. Triska, D. Denison, and H. Fritzsche, Bull. Am. Phys. Soc. 20, 392 (1975).
    [8] K. Susuzi, in Amorphous and Microcystalline Semiconductor Devices: Optoelectronic Devices, edited by J. Kanicki (Artech House, Boston, 1991).
    [9] M. J. Powell, IEEE Trans. Electron Devices 36, 2753 (1989)
    [10] N. D. Young, R. M. Brunn, R. W. Wilks, D. J. McCulloch, S. C. Deane, M. J. Edwards, G. Harkin and A. D. Pearson, J. Soc. Inf. Disp. 5/3, 275 (1997)
    [11] C. van Berkel and M. J. Powell, Appl. Phys. Lett. 51, 1094 (1987)
    [12] M. J. Powell, C. van Berkel, A. R. Franklin, S. C. Deane, and W. I. Milne, Phys. Rev. B 45, 4160 (1992)
    [13] J. P. Kleider and F. Dayoub, Phys. Rev. B 58, 10401 (1998)
    [14] M. J. Powell, C. van Berkel, and J. R. Hughes, Appl. Phys. Lett. 54, 1323 (1989)
    [15] Y. Kaneko, A. Sasano, T. Tsukuda, R. Oritsuki, and K. Suzuki, Extended Abstracts of the 18th Conference on Solid State Device Materials, p. 699 (1996)
    [16] I. D. French, S. C. Deane, D. T. Murley, J. Hewett, I. G. Gale, and M. J. Powell, Mater. Res. Soc. Symp. Proc. 467, 875 (1997)
    [17] H. Meiling and R. E. I. Schropp, Appl. Phys. Lett. 70, 2681 (1997)
    [18] S. W. Lee and S. K. Joo, IEEE Electron Device Letters, 17(4), 160 (1996)
    [19] K. Shimizu, O. Sugiura, and M. Matsumura, IEEE Transactions on Electron Devices 40, 112 (1993)
    [20] R. A. Street, Hydrogenated amorphous silicon, pp.18-20 (1991)
    [21] L. Houben, M. Luysberg, P. Hapke, R. Carius, F. Finger, and H. Wagner, Philos. Mag. A 77, 1447 (1998).
    [22] A. H. Mahan, Y. Xu, D. L. Williamson, W. Beyer, J. D. Perkins, M. Vanecek, L. M. Gedvilas, and B. P. Nelson, J. Appl. Phys. 90, 5038 (2001).
    [23] M. Pontoh, V. L. Dalal, N. Ganghi, Mat. Res. Soc. Symp. Proc. A19.6.1 715 (2002).
    [24] R. Biswas, Qiming Li, B. C. Pan, and Y. Yoon, Phys.l Rev. B, 57, 2253 (1998)
    [25] M. H. Brodsky, Manuel Cardona, and J. J. Cuomo, Phys. Rev. B, 16, 3556 (1977)
    [26] U. Kroll, J. Meier, A. Shah, S. Mikhailov, and J. Weber, J. Appl. Phys. 80, 4971 (1996)
    [27] Norbert H. Nickel: Hydrogen in semiconductor II, 61 (1999)
    [28] Enakshi Bhattacharya and A. H. Mahan, Appl. Phys. Lett. 52(19), 1587 (1988)
    [29] S. Guha and J. Yang, Scott J. Jones, Yan Chen, and D. L. Williamson, Appl. Phys. Lett. 61(41), 1444 (1992)
    [30] A. A. Langford, M. L. Fleet, B. P. Nelson, W. A. Lanford, and N. Maley, Phys. Rev. B, 45(23), 13367, (1992)
    [31] L. Houben, M. Luysberg, P. Hapke, R. Carius, F. Finger and H. Wagner, Philosophical Magazine A, 77 (6), 1447 (1998)
    [32] C. Smit, R. A. C. M. M. van Swaaij, H. Donker, A. M. H. N. Petit, W. M. M. Kessels, and M. C. M. van de Sanden, J. Appl. Phys. 94, 3582 (2003).
    [33] T. Kaneko, K. Onisawa, M. Wakagi, Y. Kita, T. Minemura, Jpn. J. Appl. Phys. 32, 4097 (1993)
    [34] R. C. Teixeira, I. Doi, M. B. P. Zakia, J. A. Diniz, J. W. Swart, Mater. Sci. Eng. B 112, 160 (2004)
    [35] K. Laaziri, S. Kycia, S. Roorda, M. Chicoine, J. L. Robertson, J. Wang, and S. C. Moss, Phys. Rev. Lett. 82, 3460 (1999)
    [36] K. Laaziri, S. Kycia, S. Roorda, M. Chicoine, J. L. Robertson, J. Wang, and S. C. Moss, Phys. Rev. B 60, 13520 (1999)
    [37] J. Fortner and J. S. Lannin, Phys. Rev. B 39, 5527 (1989)
    [38] R. Tsu, J. Gonzalez-Hernandez, and F. H. Pollack, J. Non-Cryst. Solids 66,109 (1984)
    [39] D. Beeman, R. Tsu, and M. F. Thorpe, Phys. Rev. B 32, 874 (1985)
    [40] F. Kail, J. Farjas, P. Roura, C. Secouard, O. Nos, J. Bertomeu, F. Alzina, and P. Roca i Cabarrocas, Appl. Phys. Lett. 97, 031918 (2010)
    [41] R. B. Wehrspohn, S. C. Deane, I. D. French, I. Gale, J. Hewett, M. J. Powell, and J. Robertson, J. Appl. Phys 87(1), 144 (2000)
    [42] H. Windischmann, J. Appl. Phys. 62, 1800 (1987)
    [43] J. Dutta, U. Kroll, P. Chabloz, A. Shah, A. A. Howling, J.-L. Dorier, and C. Hollenstein, J. Appl. Phys. 72, 3220 (1992)
    [44] D. L. Smith, Thin Film Deposition (McGraw-Hill, New York), (1995), Chap. 5.6
    [45] D. L. Staebler and C. R. Wronski, Appl. Phys. Lett. 31, 292 (1997).
    [46] M. A. Green, P. A. Basore, N. Chang, D. Clugston, R. Egan, R. Evans, D. Hogg, S. Jarnason, M. Keevers, P. Lasswell, J. O’Sullivan, U. Schubert, A. Turner, S. R. Wenham, and T. Young, Sol. Energy 77, 857 (2004).
    [47] J. F. Michaud, R. Rogel, T. Mohammed-Brahim, M. Sarret, and O. Bonnaud, Thin Solid Filmsm 487, 81 (2005).
    [48] H. Kuriyama, S. Kiyama, S. Noguchi, T. Kuwahara, S. Ishida, T. Nohda, K. Sano, H. Iwata, H. Kawata, M. Osumi, S. Tsuda, S. Nakano, and Y. Kuwano, Jpn. J. Appl. Phys. 30, 3700 (1991).
    [49]P. Lengsfeld, N. H. Nickel, and W. Fuhs, Appl. Phys. Lett. 76, 1680 (2000).
    [50] C. W. Lee, C. C Lee, and Y. T. Kim, Appl. Phys. A 56, 123 (1993)
    [51] S. Honda, A. Fejfar, J. Kočka, A. Ogane, Y. Uraoka and T. Fuyuki, J. Non-Cryst. Solids 352, 955 (2006).
    [52] R. B. Iverson and R. Reif, J. Appl. Phys. 62, 1675 (1987)
    [53] John Robertson, J. Appl. Phys. 93 ,731 (2003)
    [54] Y. Masaki, P. G. LeComber, and A. G. Fitzgerald, J. Appl. Phys. 74, 129 (1993).
    [55] D. Kashchiev, Surf. Sci.14, 209 (1969)
    [56] K. F. Kelton, A. L. Greer, and C.V. Thompson, J. Chem. Phys. 79, 6261 (1983)
    [57] C. Song, G. R. Chen, J. Xu, T. Wang, H.C. Sun, Y. Liu, W. Li, Z.Y. Ma, L. Xu, X.F. Huang and K.J. Chen, J. Appl. Phys. 105, 054901 (2009).
    [58] Y. Wu, J. T. Stephen, D. X. Han, and J. M. Rutland, R. S. Crandall and A. H. Mahan, Phys. Rev. lett. 77, 2049 (1996)
    [59] D. L. Young, Paul Stradins, Yueqin Xu, Lynn Gedvilas, Bob Reedy, A. H. Mahan, Howard M. Branz, Qi Wang, and D. L. Williamson, Appl. Phys. Lett. 89, 161910 (2006)
    [60] A. H. Mahan, B. Roy, R. C. Reedy, Jr., D. W. Readey, and D. S. Ginley, J. Appl. Phys. 99, 023507 (2006)
    [61] David L. Young, Paul Stradins, Yueqin Xu, Lynn M. Gedvilas, Eugene Iwaniczko, Yanfa Yan, Howard M. Branz, Qi Wang, and Don L. Williamson, Appl. Phys. Lett. 90, 081923 (2007)
    [62] Hideo Miura, Hiroyuki Ohta, and Noriaki Okamoto, and Toru Kaga, Appl. Phys. Lett. 60, 2746 (1992)
    [63] P. Roura, J. Farjas, and P. Roca i Cabarrocas, J. Appl. Phys. 104, 073521 (2008)
    [64] P. Roura, J. Farjas, C. Rath, J. Serra-Miralles, E. Bertran, and P. Roca i Cabarrocas, Phys. Rev. B 73, 085203 (2006)
    [65] J. Farjas, D. Das, J. Fort, P. Roura, and E. Bertran, Phys. Rev. B 65,115403 (2002)
    [66] K. Zellama, L. Chahed, P. Sladek, M. L. Theye, J. H. von Bardeleben, and P. Roca i Cabarrocas, Phys. Rev. B 53, 3804 (1996)
    [67] N. H. Nickel and W. B. Jackson, Phys. Rev. B 51, 4872 (1995)
    [68] Y. Yamyoto, H. Nomura, T. Tanaka, M. Hiramatsu, M. Hori and T. Goto, Jpn. J. Appl. Phys. 33, 4320 (1994)
    [69] M. Zhang, Y. Nakayama, S. Nonoyama and K. Wakita, Journal of
    Non-Crystalline Solids 164-166 63-66 (1993)
    [70] P. Flinn, D. Gardner, and W. Nix, “Measurement and Interpretation of Stress in Aluminum-Based Metallization as a Function of Thermal History,” IEEE Trans. Electron Devices, 34(3), pp. 689–699 (1987)
    [71], L. B. Freund, and S. Suresh,”Thin Film Materials: Stress, Defect Formation and Surface Evolution”, Cambridge University, Cambridge, UK. (2004)
    [72] K. Zellama, L. Chahed, P. Sládek, M. L. Thèye, J. H. von Bardeleben and P. Roca i Cabarrocas, Phys. Rev. B. 53 (1996) 3804.
    [73] D. Beeman, R Tsu, and M. F. Thorpe, Phys. Rev. B 32, 874 (1985)
    [74] W. A. Johnson and R. F. Mehl, Trans. Am. Inst. Min. Metall. Pet. Eng. 135, 415 (1939)
    [75] M. Avrami, J. Chem. Phys. 7, 1103 (1939)
    [76] M. Avrami, J. Chem. Phys. 8, 212 (1940)
    [77] M. Avrami, J. Chem. Phys. 9, 177 (1941)
    [78] Bernard Dennis Cullity, Stuart R. Stock, Elements of X-ray Diffraction , Prentice Hall (2001)
    [79] A. H. Mahan, T. Su, D. L. Williamson, L. M. Gedvilas, S. P. Ahrenkiel, P. A. Parilla, Y.Xu, and D. A. Ginley, Adv. Funct. Mater., 19, 1 (2009)

    QR CODE
    :::