跳到主要內容

簡易檢索 / 詳目顯示

研究生: 徐健程
Chien Cheng Hsu
論文名稱: 以二維電洞氣感測 DNA
Two Dimensional Hole Gas for DNA Sensing
指導教授: 賴昆佑
Kun-Yu Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學研究所碩士在職專班
Executive Master of Optics and Photonics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 60
中文關鍵詞: DNA感測器二維電洞氣
外文關鍵詞: DNA, Sensing, Two Dimensional Hole Gas
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • DNA 檢測是一項關鍵的生物技術,用於檢測個體間的遺傳差異。
    本研究在 Si 基板上成長 AlGaN/GaN/BN,得到高濃度的二維電洞氣
    (two dimensional hole gas, 2DHG),並以此測試 DNA 的感測效能。
    使用 Si 基板和不同材料(AlGaN、BN..)製成的半導體元件具有以
    下優點,Si 成本低、且與成熟的 CMOS 技術相容,極具商業價值。
    其次,透過選擇不同的材料堆疊,可以調節元件的能隙和界面特性,
    進一步優化其檢測性能。此外,使用電壓和電流差異檢測 DNA 差異
    可簡化實驗流程,並提供快速、高效的檢測結果。
    然而,在未來的研究中需要克服以下問題,需要進一步研究不同材
    料堆疊對檢測性能的影響,以找到最佳組合並最大程度地提高靈敏度
    和準確性。其次,需要解決樣本前處理、干擾和檢測靈敏度等方面的
    挑戰,特別是在高濃度 DNA 樣本的檢測中。最後,需要開展更深入
    的研究,以確定電壓和電流差異與 DNA 差異之間的關聯性,並進一
    步改進檢測的準確性和可靠性。總的來說,使用 Si 基板和不同材料
    堆疊的半導體元件以電壓和電流差異檢測 DNA 差異具有優越的靈敏
    度、調控性和高效性。未來的研究應該集中在克服上述挑戰,以推動
    這一 DNA 檢測方式進一步發展。


    DNA testing is a crucial biotechnology used to detect genetic
    differences between individuals. This study investigates the feasibility of
    DNA testing by the two dimensional hole gas (2DHG) formed by
    AlGaN/GaN/BN grown on Si substrates.
    The semiconductor devices fabricated on Si substrates with different
    materials (AlGaN, BN, etc.) offer several advantages. Si is cost effective
    and compatible with the mature CMOS technology, being suitable for
    commercialization. Furthermore, by selecting different material stackings,
    the device's bandgap and interface properties can be adjusted to further
    optimize its detection performance. Additionally, detecting DNA
    differences through voltage and current variations simplifies the
    experimental process and provides rapid and efficient results.
    However, several challenges need to be addressed in future research.
    It is necessary to further investigate the impact of different material
    stackings on detection performance to identify the optimal combination
    and maximize sensitivity and accuracy. Furthermore, challenges related to
    sample preparation, interference, and detection sensitivity need to be
    addressed, particularly in the detection of high-concentration DNA
    samples. Finally, more in-depth research is needed to determine the
    correlation between voltage and current variations and DNA differences.

    目錄 論文摘要.................................................................................................................... VII Abstract.....................................................................................................................VIII 致謝..............................................................................................................................IX 目錄...............................................................................................................................X 圖目錄........................................................................................................................ XII 表目錄.......................................................................................................................XIII 第一章 緒論............................................................................................................1 1.1 前言............................................................................................................1 1.2 AlGaN 生醫感測器的發展現況..............................................................1 1.3 AlGaN 生醫感測器的技術瓶頸..............................................................2 1.4 二維電洞氣的形成原理(Two-dimensional hole gas) ....................................3 1.5 研究動機及章節架構.................................................................................4 第二章 實驗原理、步驟與儀器............................................................................5 2.1 磊晶結構與元件製備......................................................................................5 2.2 DNA 樣本的製備............................................................................................7 2.3 儀器介紹電源供應器 SMU(Keysight 2400)..................................................8 第三章 結果分析與討論......................................................................................10 3.1 DNA 濃度對 AlGaN 電壓電流之影響 ........................................................10 3.2 使用不同濃度樣本對 AlGaN 製成的 IV 的表現........................................16 3.2.1 1’40’’ AlGaN/ 60-min GaN/BN/Si 在電壓電流上的表現(M5703) .16 3.2.2 10s AlN -Si(100)在電壓電流上的表現 (M5796) ............................20 XI 3.2.3 5s AlN-Si(100)在電壓電流上的表現(M5788) .................................24 3.2.4 3s AlN-Si(100)在電壓電流上的表現(M5784) .................................28 3.2.5 不同 AlGaN 比對 SI-Si(100)電壓電流上的表現(SI-Si(100)) .........32 3.2.6 比對不同製程 M5742 電壓電流上的表現(M5742).........................36 第四章 結論與未來瞻望......................................................................................42 4.1 結論................................................................................................................42 4.2 未來瞻望........................................................................................................43

    [1] Wang, J., Zhang, Y., Yang, Y., & Li, Y. (2022). Advances in DNA measurement
    techniques and AlGaN biomedical sensors. Biosensors, 12(1), 10.
    [2] Sun, Y., Zhang, X., Zhang, X., Tang, J., & Shen, Y. (2021). Recent advances in
    DNA measurement techniques. Biosensors and Bioelectronics, 183, 113248.
    [3] Chen, C. Y., Kuo, Y. C., Li, Z., Xie, M. H., Li, Z. J., Zhang, R., ... & Feng, Z. H.
    (2020). AlGaN ultraviolet photodetectors with AlN interlayers grown on patterned
    sapphire substrates. Journal of Applied Physics, 128(3), 035702.
    [4] Liu, Y., et al. (2021). Advances in biological detection technologies: Principles,
    applications, and challenges. Biosensors and Bioelectronics, 193, 113550.
    [5] Smith, J., et al. (2020). Recent advances in medical diagnosis using biosensors.
    Sensors and Actuators B: Chemical, 304, 127212.
    [6] Wang, Z., et al. (2019). Advances in biological imaging techniques for biomedical
    applications. Journal of Biophotonics, 12(2), e201800189.
    [7] Li, X., et al. (2022). Emerging trends in drug detection using biosensors. Trends in
    Analytical Chemistry, 146, 117204.
    [8] Anderson, J. M., & Shive, M. S. (1997). Biodegradation and biocompatibility of
    PLA and PLGA microspheres. Advanced Drug Delivery Reviews, 28(1), 5-24.
    [9] Leung, H., & Yang, L. (2006). Noise reduction techniques in electronic systems.
    2nd ed. John Wiley & Sons.
    [10] Li, L., et al. (2017). "Direct observation of the layer-dependent electronic
    structure in phosphorene." Nature Nanotechnology, 12(1), 21-25.
    [11] Stoneham, A. M. (1975). "Theory of Defects in Solids: Electronic Structure of
    Defects in Insulators and Semiconductors." Oxford University Press, USA.
    45
    [12] Jamshidi, P., & Pahl, C. (2016). A survey of migration techniques for cloud
    computing. Journal of Network and Computer Applications, 63, 8-25.
    [13] Neamen, D. (2002). "Semiconductor Physics and Devices: Basic Principles."
    McGraw-Hill Science/Engineering/Math.
    [14] Mishra, U. K., Shen, L., & Kazior, T. E. (2008). SiC device technology for highpower and high-temperature applications. Proceedings of the IEEE, 96(2), 287-305.
    [15] Mishra, U. K., Shen, L., & Kazior, T. E. (2008). GaAs device technology for
    microwave applications. Proceedings of the IEEE, 96(2), 287-305.
    [16] Tan, L. S. (2014). Fundamentals of semiconductor devices. John Wiley & Sons.
    [17] Hull, R. (1999). Properties of crystalline solids: an introduction. John Wiley &
    Sons.
    [18] Kittel, C. (1996). Introduction to solid state physics. John Wiley & Sons.
    [19] Smith, J. A., Johnson, R. W., Thompson, S. G., & Davis, M. J. (2018). Designing
    Epitaxial Structures for Enhanced Semiconductor Performance. Journal of Applied
    Physics, 124(6), 064301.
    [20] Chen, L., Li, Q., Wang, H., & Zhang, J. (2019). Techniques for Thin Film
    Deposition: A Comprehensive Review. Journal of Vacuum Science & Technology A,
    37(4), 041501.
    [21] Kim, Y. S., Lee, J. H., Park, S. H., & Choi, J. H. (2020). Photoresist Coating Methods
    for Advanced Lithography. Journal of Microlithography, Microfabrication, and
    Microsystems, 19(3), 031201.
    [22] Zhang, Z., Li, L., & Zhang, X. (2019). Preparation and characterization of DNA
    powders for gene delivery. Methods in Molecular Biology, 1943, 181-188.
    46
    [23] Li, J., Liu, F., Shao, Y., Yu, X., & Zhang, X. (2018). A comparative study of
    phosphate-buffered saline and saline as a medium for in vitro cell culture.
    Experimental and Therapeutic Medicine, 16(3), 2073-2082.
    [24] Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2013). Applied multiple
    regression/correlation analysis for the behavioral sciences (3rd ed.). Routledge.
    [25]Gelman, A., & Hill, J. (2006). Data analysis using regression and
    multilevel/hierarchical models. Cambridge University Press.

    QR CODE
    :::