| 研究生: |
邱思翰 Szu-han Chiu |
|---|---|
| 論文名稱: |
利用WRF模式研究SoWMEX IOP3期間地形效應對於強降雨個案之影響 Using WRF Model to Investigate the Impact of Orographic Effect on Heavy Rainfall Case During SoWMEX IOP3. |
| 指導教授: |
林沛練
Pay-liam Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 大氣物理研究所 Graduate Institute of Atmospheric Physics |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 地形效應 |
| 外文關鍵詞: | orographic effect |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在2008年5月30日,一道梅雨鋒面系統經過台灣,為台灣北部帶來豪雨,31日,台灣西側生成一個對流系統,並慢慢地隨著鋒面的尾端朝東南方進入台灣內陸,沿途中不斷的增強,並在屏東北部山區造成強降雨,時雨量達40mm/hr,隨後便隨著鋒面移出台灣,且衰弱消失。此篇論文利用WRF模式來探討台灣地形對此對流系統之生成、增強以及其伴隨之降雨極值位置的影響。本研究利用不同地形高度的敏感度實驗來驗證台灣地形對對流系統發展的作用,包含CTRL run(full -terrain)、HTRN run(half -terrain)、及NTRN run(no-terrain)等三種不同地形高度的敏感度模擬實驗。
根據CTRL run(FR≒0.4)模擬結果發現,系統生成初期之對流系統的生成與台灣地形密切相關,由於台灣南方之西南風受到中央山脈阻擋之影響,使得氣流無法過山,因此產生往北繞山的風場,此氣流與北方之東北風在台灣中部沿海形成氣旋式渦旋,並在原地停留一至兩小時,隨後便形成對流系統。因此在地形敏感度實驗中,隨著台灣地形高度降低,由於西南風受到中央山脈的影響變小,使得向北繞山的氣流比CTRL run弱,因此對流系統生成位置偏向較內陸,甚至當地形去除後此對流系統便無法形成。另外根據模式模擬的結果也發現,由於對流系統在進入內陸後,繞山之氣流與台灣海峽上之北風仍不斷輻合,使對流系統在進入內陸後持續增強成大範圍之對流系統,此輻合不斷地提供有利於對流系統發展之不穩定的環境,對於對本個案之對流系統的增強及維持相當重要,之後由於鋒面離開台灣,全台風向皆轉為東北風,此對流系統才逐漸消散。在HTRN run (FR≒0.8)中,由於氣流大部分皆可過山,使得往北的繞山氣流變弱,同時鋒面受到地形的影響也減弱,造成對流系統移進內陸後,強度無法繼續維持。而在HTRN run中,屏東仍然有產生降雨極值,位置較CTRL run南邊,其形成原因主要來自鋒面本身的輻合,而非地形之阻擋與抬升作用,因此當地形去除後,雖然本個案所探討之對流系統無法生成,但在台東附近仍然有降雨產生,形成的主因也是由鋒面本身的輻合所造成,且因少了中央山脈的影響,鋒面移速較HTRN run更快,位置也較HTRN run東邊。
In May 30, 2008, a Mei-Yu Front system passed over Taiwan, bringing heavy rainfall to northern Taiwan. In May 31, a convective cell was generated at western Taiwan. This convective system associated with the front to move into Taiwan area. It caused heavy rainfall and the maximum rainfall rate reached 40mm/hr in the mountains area of northern Pingtung. Later, this system moved out of Taiwan accompanied with the front and dissipated, gradually. This study uses WRF model to investigate how the terrain of Taiwan influence on the generation and enhancement of the convective cell and the movement of the extreme rainfall location. In this study, several sensitivity experiments with different terrain heights of Taiwan are performed to verify the impact of terrain on the development of convective system. The sensitive tests contain three different terrain heights including CTRL run (full-terrain), HTRN run(half-terrain), and NTRN run(no-terrain).
The results of CTRL run(FR ≒ 0.4) show that the formation of this convective system is closely related to terrain effects. The airflow was blocked by the Taiwan Central Mountain Range, so that the wind direction was changed from southwestly to southly and converges with the frontal northeasterly and provide favorable condition for the formation of the convective system. When the terrain height is reduced, the generation location of convective system moves into inland. If the terrain is removed, the convective cell will be not generated.
After the convective system moved into the inland area, the southly airflow resulted from the blocking effects of Taiwan terrain continuously converge with the northly. This convergence provide a favorable condition for the enhancement and maintain of the the convective system. The rainfall maximum was located at the windward slope. However, in the HTRN experiment, the southly wind resulted from the terrain blocking effect became weak due to the terrain height is reduced to the half. The intensity of the convective system can not be maintained when it moved into the island area.
王時鼎、鄭俠、徐晉淮與丘台光,1985:五、六月間台灣地區暴雨之環境條件。天氣分析與預報研討會論文彙編,中央氣象局,55-77。
鄧仁星與陳景森,1990:台灣地區颮線之環境分析。大氣科學,18,149-157。
Akaeda, K., J. Reisner, and D. Parsons, 1995: The role of mesoscale and topographically induced circulations initiating a flash flood observed during the TAMEX project. Mon. Wea. Rev., 123, 1720–1739.
Banta, R. M., 1990: The role of mountain flows in making clouds. Atmospheric Processes over Complex Terrain,Meteor.Monogr., No. 45, Amer. Meteor. Soc., 229–284.
Chen, C.-S., W.-S. Chen, and Z.-S. Deng, 1991: A study of a mountain-generated precipitation system in northern Taiwan during TAMEX IOP 8. Mon. Wea. Rev., 119, 2574–2606.
Chen, C.-S., and Y.-L. Chen, 2003 : The rainfall characteristics of Taiwan. Mon. Wea. Rev., 131, 1323-1341.
____,______, Y.-L. Chen, C.-L. Liu, P.-L. Lin, and W.-C. Chen, 2007b: The statistics of heavy rainfall occurrences in Taiwan. Weather Forecasting. 22, 981-1002.
Chen, T.-C., M.-C. Yen, J.-C. Hsieh, and R. W. Arritt, 1999 : Diurnal and seasonal variations of the rainfall measured by the automatic rainfall and meteorological telemetry system in Taiwan. Bull. Amer. Meteor. Soc., 80, 2299-2312.
Chen, Y.-L., J. Li, 1995 : Large-scale conditions favorable for the development of heavy rainfall during TAMEX IOP 3. Mon. Wea. Rev., 123, 2978-3002.
____,______, and J. Feng, 2001: Numerical simulations of airflow and cloud distributions over the windward side of the island of Hawaii. Part I: The effects of trade-wind inversion. Mon. Wea. Rev., 129, 1117–1134.
Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model, J. Atmos. Sci., 46, 3077–3107.
Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part Ⅰ: Description. J. Atmos. Sci., 51, 249-280.
Giambelluca, T. W., M. A. Nullet, and T. A. Schroeder, 1986: Rainfall atlas of Hawaii. Rep. R76, Hawaii Department of Land and Natural Resources, Honolulu, HI, 267 pp.
Grell, G. A., and D. Devenyi, 2002: A generalized approach to parameterizing convection com-bining ensemble and data assimilation techniques. Geophys. Res. Lett., 29(14), Article 1693.
Janjic, Z. I., 2002: Nonsingular Implementation of the Mellor–Yamada Level 2.5 Scheme in the NCEP Meso model, NCEP Office Note, No. 437, 61 pp.
Maddox, R. A., 1983: Large-scale meteorological conditions associated with midlatitude, mesoscale convective complexes. Mon. Wea. Rev., 111, 1475-1493.
Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851–875.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res., 102 (D14), 16663–16682.
Rasmussen, R. M., P. R. Smolarkiewicz, and J. Warner, 1989: On the dynamics of Hawaiian cloud bands: Comparison of model results with observations and island climatology. J. Atmos. Sci., 46, 1589–1608.
Smolarkiewicz, P. R., R. M. Rasmussen, and T. L. Clark, 1988: On the dynamics of Hawaiian cloud bands: Island forcing. J. Atmos. Sci., 45, 1872–1905.
Tao, S. Y., and L. X. Chen, 1987 : A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C. P. Chang and T. N. Krishnamutri, Eds. Oxford University Press, 60-92.
Wang, C. C.,T. J. Chen, T. C. Chen, and K.Tsuboki,2005:A Numerical Study on the Effects of Taiwan Topography on a Convective Line during the Mei-yu Season. Mon. Wea. Rev.,133,3217–3242.
Yeh, H.-C., and Y.-L. Chen, 1998 : Characteristic of rainfall distribution over Taiwan during TAMEX. J. Appl. Meteor., 37, 1457-1469.
___,______, and _____ ____, 2002 : The role of offshore convergence on coastal rainfall during TAMEX IOP 3. Mon. Wea. Rev., 130, 2709-2730.