跳到主要內容

簡易檢索 / 詳目顯示

研究生: 柯羽航
Halin Ke
論文名稱: 使用紋理能量圖和卷積神經網路在二維條碼偵測
指導教授: 陳慶瀚
Pierre Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系在職專班
Executive Master of Computer Science & Information Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 72
中文關鍵詞: Data-Matrix二維條碼紋理能量圖卷積神經網路
外文關鍵詞: Data-Matrix barcode, Texture Energy Map, Convolutional Neural Network
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Data-Matrix二維條碼因其抗損毀能力強、所佔空間小等特性,已被廣泛應用於航太工業、汽車製造業、半導體與印刷電路板零件的識別。條碼偵測是條碼辨識的關鍵。針對低品質的條碼影像,例如扭曲、模糊、光照不均等,典型的條碼偵測方法會有偵測率過低和辨識困難的問題。本研究提出一個創新的條碼偵測方法,基於Data-Matrix二維條碼其邊緣取向具有相互垂直的特性,將條碼影像轉換成紋理能量圖,再結合卷積神經網路進行條碼偵測模型的深度學習。我們使用一個低品質Data-Matrix條碼影像資料庫來驗證所提出的方法,其條碼偵測正確率可以提升22%,可有效改善條碼辨識性能不足的問題。


    Data-Matrix 2D barcodes have been widely used in the identification of aerospace industry, automotive industry, semiconductor and printed circuit board parts due to their strong resistance to damage and small space. Barcode detection is the key to barcode recognition. For low-quality barcode images, such as distortion, blur, uneven illumination, etc. The typical barcode detection methods have problems of low detection rate and difficulty in identification. This study proposes an innovative barcode detection method based on Data-Matrix two-dimensional barcode whose edge orientation has mutually perpendicular characteristics, converts the barcode image into a Texture Energy Map, and combines the depth learning of the barcode detection model with the Convolutional Neural Network. We use a low-quality Data-Matrix barcode image database to verify the proposed method. The barcode detection accuracy can be improved by 22%, which can effectively improve the problem of insufficient barcode recognition performance.

    致謝 1 摘要 1 Abstract 1 目錄 1 圖目錄 1 第一章、緒論 1 1.1 研究背景 1 1.2 研究目的 3 1.3 論文架構 3 第二章、相關技術 4 2.1 二維條碼偵測 4 2.1.1 邊緣偵測 4 2.1.2 紋理分析 7 2.1.3 型態學運算 10 2.2 卷積神經網路物件偵測 11 2.2.1 R-CNN 12 2.2.2 Fast R-CNN 13 2.2.3 Faster R-CNN 14 2.2.4 YOLO 16 第三章、系統設計 20 3.1 Data-Matrix二維條碼偵測系統架構 21 3.2 影像前處理模組 21 3.2.1 梯度強化 22 3.2.2 邊緣偵測 23 3.2.3 紋理能量圖 23 3.2.4 影像前處理離散事件建模 24 3.3 YOLO條碼偵測模組 25 3.4 條碼影像標註 31 3.4.1 標註步驟 32 3.4.2 標註規則 36 3.4.3 YOLO訓練集整理 37 第四章、實驗 39 4.1 實驗平台與方法 39 4.2 YOLO模型訓練實驗 42 4.3 YOLO模型訓練集數量實驗 45 4.4 LibDmtx條碼偵測實驗 47 4.5 實驗比較與分析 48 第五章、結論與未來展望 54 5.1 結論 54 5.2 未來展望 55 參考文獻 56

    [1] R. Maini and H. Aggarwal, "Study and comparison of various image edge detection techniques", International journal of image processing, vol. 3, no. 1, pp. 1-12, 2009.
    [2] J.-H. Li, W.-H. Wang, T.-T. Rao, W.-B. Zhu, and C.-J. Liu, "Morphological segmentation of 2-D barcode gray scale image", International Conference on Information System and Artificial Intelligence, pp. 62-68, 2016.
    [3] M. Katona and L. G. Nyúl, "A novel method for accurate and efficient barcode detection with morphological operations", 2012 Eighth International Conference on Signal Image Technology and Internet Based Systems, pp. 307-314, 2012.
    [4] M. Basu, "Gaussian-based edge-detection methods-a survey", IEEE Transactions on Systems, Man, Cybernetics, Part C, vol. 32, no. 3, pp. 252-260, 2002.
    [5] G. Deng and L. Cahill, "An adaptive Gaussian filter for noise reduction and edge detection", Nuclear Science Symposium and Medical Imaging Conference, 1993., 1993 IEEE Conference Record., pp. 1615-1619, 1993.
    [6] R. M. Haralick, "Statistical and structural approaches to texture", Proceedings of the IEEE, vol. 67, no. 5, pp. 786-804, 1979.
    [7] A. Padma and R. Sukanesh, "Automatic classification and segmentation of brain tumor in CT images using optimal dominant gray level run length texture features", International Journal of Advanced Computer Science and Applications, vol. 2, no. 10, 2011.
    [8] J. Mao and A. K. Jain, "Texture classification and segmentation using multiresolution simultaneous autoregressive models", Pattern recognition, vol. 25, no. 2, pp. 173-188, 1992.
    [9] M. K. Bashar, T. Matsumoto, and N. Ohnishi, "Wavelet transform-based locally orderless images for texture segmentation", Pattern Recognition Letters, vol. 24, no. 15, pp. 2633-2650, 2003.
    [10] H. Hu, W. Xu, and Q. Huang, "A 2D barcode extraction method based on texture direction analysis", Image and Graphics, 2009. ICIG'09. Fifth International Conference on, pp. 759-762, 2009.
    [11] M. Katona and L. G. Nyúl, "Efficient 1D and 2D barcode detection using mathematical morphology", International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing, pp. 464-475, 2013.
    [12] Y. Kimori, "Mathematical morphology-based approach to the enhancement of morphological features in medical images", Journal of clinical bioinformatics, vol. 1, no. 1, p. 33, 2011.
    [13] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition", Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.
    [14] N. N. Ventsov and L. A. Podkolzina, "Localization of Barcodes Using Artificial Neural Network", 2018 IEEE East-West Design & Test Symposium, pp. 1-6, 2018.
    [15] C. Ching-Han, L. Ming-Yi, and X.-C. Guo, "High-level modeling and synthesis of smart sensor networks for Industrial Internet of Things", Computers & Electrical Engineering, vol. 61, pp. 48-66, 2017.
    [16] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You only look once: Unified, real-time object detection", Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779-788, 2016.
    [17] H.-R. Zheng, L.-R. Xiong, and T.-Z. Wang, "Two dimensional barcode image adjustment based on Hough transform", Journal of Zhejiang University of Technology, vol. 31, no. 2, pp. 169-172, 2003.
    [18] D.-H. Hu, H. Tan, and X.-M. Chen, "The application of Radon transform in 2D barcode image recognition", JOURNAL-WUHAN UNIVERSITY NATURAL SCIENCES EDITION vol. 51, no. 5, p. 584, 2005.
    [19] D. H. Ballard, "Generalizing the Hough transform to detect arbitrary shapes", Pattern recognition, vol. 13, no. 2, pp. 111-122, 1981.
    [20] H. Kälviäinen, P. Hirvonen, and E. Oja, "Houghtool—a software package for the use of the Hough transform", Pattern Recognition Letters, vol. 17, no. 8, pp. 889-897, 1996.
    [21] F. Liu, A. Liu, M. Wang, and Z. Yang, "Robust and fast localization algorithm for data matrix barcode", Optoelectronics and Image Processing (ICOIP), 2010 International Conference on, vol. 2, pp. 356-359, 2010.
    [22] A. Sun, Y. Sun, and C. Liu, "The QR-code reorganization in illegible snapshots taken by mobile phones", 2007 International Conference on Computational Science and its Applications (ICCSA 2007), pp. 532-538, 2007.
    [23] Y.-H. Chang, C.-H. Chu, and M.-S. Chen, "A General Scheme for Extracting QR Code from a non-uniform background in Camera Phones and Applications", Ninth IEEE International Symposium on Multimedia (ISM 2007), pp. 123-130, 2007.
    [24] E. Ouaviani, A. Pavan, M. Bottazzi, E. Brunelli, F. Caselli, and M. Guerrero, "A common image processing framework for 2D barcode reading", 1999.
    [25] P. K. Sahoo, S. Soltani, and A. K. Wong, "A survey of thresholding techniques", Computer vision, graphics, image processing, vol. 41, no. 2, pp. 233-260, 1988.
    [26] C. R. Jung and R. Schramm, "Rectangle detection based on a windowed Hough transform", Proceedings. 17th Brazilian Symposium on Computer Graphics and Image Processing, pp. 113-120, 2004.
    [27] E. Ohbuchi, H. Hanaizumi, and L. A. Hock, "Barcode readers using the camera device in mobile phones", 2004 international conference on cyberworlds, pp. 260-265, 2004.
    [28] X. J. Juett and X. Qi, "Barcode localization using bottom-hat filter", NSF Research Experience for Undergraduates, vol. 8, 2005.
    [29] R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation", Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 580-587, 2014.
    [30] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks", Advances in neural information processing systems, pp. 1097-1105, 2012.
    [31] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. J. I. j. o. c. v. Smeulders, "Selective search for object recognition", vol. 104, no. 2, pp. 154-171, 2013.
    [32] R. Girshick, "Fast r-cnn", Proceedings of the IEEE international conference on computer vision, pp. 1440-1448, 2015.
    [33] S. Ren, K. He, R. Girshick, and J. Sun, "Faster r-cnn: Towards real-time object detection with region proposal networks", Advances in neural information processing systems, pp. 91-99, 2015.
    [34] R. J. Mayer, "IDEF0 function modeling", A Reconstruction of the Original Air Force Wright Aeronautical Laboratory Technical Report, AFWAL-TR-81- , Knowledge-Based System Inc, College Station, TX, 1992.

    QR CODE
    :::