| 研究生: |
林憲佳 Hsien-Chia Lin |
|---|---|
| 論文名稱: |
應用於感測器與太赫茲通訊之互補式金氧半高頻電路設計 CMOS High-Frequency Circuit Design for Sensor and THz Communication Applications |
| 指導教授: |
李俊興
Chun-Hsing Li |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 感測器 、太赫茲 、通訊 、互補式金氧半 、高頻電路 |
| 外文關鍵詞: | Sensor, THz, Communication, CMOS, High-Frequency |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文提出一種低成本、高效率的感測器系統。利用180-nm CMOS技術降低電晶體本身臨界電壓,以及利用SIP(System In Package)技術,將被動元件電阻、電容、電感等元件製作於高阻抗基板上,利用高阻抗基板GIPD(Glass Integrated Passive Device)製程特性,以及其低損耗金屬走線的優勢,將被動元件的損耗與其本身的品質因數大幅的提升,大幅提升感測器的敏感度與效率,也取代掉傳統SOC(System On Chip)技術的不足與缺陷。
本文感測器-能量獵取器可利用獵取0.75、0.9、1.8、2.18、2.4-GHz等五個頻段的能量,來提供輸出電壓,整體效率最高可達35%,且輸出電壓可達到13.5V。本文感測器-低功耗接收機利用SIP技術減少級數間的功率損耗,且透過低功耗的設計應用,使得整體電路功率消耗僅有μW等級,且輸出可產生2-MHz的解調變訊號。
本文提出一種低成本、低功耗、高效能THz通訊技術。利用40-nm CMOS技術實現200-GHz通訊技術,藉由100-GHz壓控震盪器產生訊號,且透過PLL(Phase Locked Loop)去進行鎖定機制,將訊號穩定於100-GHz,再將訊號輸出至後級緩衝器與電壓放大器,將訊號放大至一定大小後,再透過功率放大器大幅度的將輸出訊號提高,接著利用倍頻器的效果,將訊號由100-GHz轉為200-GHz去透過振幅調變器進行調變,最後將訊號透過高頻天線進行輸出。本文提出之THz通訊技術可經由調變器進行調變,調變速度可高達20-Gb/s,且輸出功率可高達-0.6dBm。
This thesis proposes a low-cost, high-efficiency sensor system. This design use TSMC 180-nm CMOS process because the low-Vth and use system in package technology. All of the passive device R,L,C are design on the high-substrate process GIPD(Glass Integrated Passive Device). Use the low-metal loss to provide quality factor of the passive devices, which provides higher sensitivity and efficiency. Also this process can improve the disadvantages of the tradition process SOC(System On Chip).
This thesis proposes sensor-energy harvester can provide voltage with five band 0.75、 0.9、1.8、2.18、2.4-GHz respectively, and the most efficiency can be 35% and the output voltage can be 13.5 V. This thesis proposes sensor-low power receiver uses SIP (System In Package) technology to reduce stage power consumption from the stag to stage, and the total power consumption only cost μW order cause the lower power design application, while the output can provide 2-MHz signal.
This thesis proposes a low power consumption, high efficiency THz communication applications. It can be use at 200-GHz communication application by 40-nm CMOS technology. Phase Locked Loop (PLL) makes the frequency and phase stable which from 100-GHz voltage control oscillator (VCO) generates at input signal. And supply to next stage-Buffer & Amplifier when the input signal be locked. When signal is grew up enough for power amplifier (PA) to use. Signal gets more higher output power by power amplifier. The high-power input signal will be raised up from 100-GHz to 200-GHz by the frequency Doubler (2X), and it can be modulate from ASK mod. Finally the output single will be control at 20-Gb/s digital data which at 200-GHz to the next stage high-gain antenna, and the total output power can be -0.6dBm.
[1] Y. Z and Michael Y.W Chia , “A Low-Power Ultra-Wideband CMOS True RMS Power Detector,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 5, pp. 1052-1068, MAY 2008.
[2] Kenneth A. Townsend, “A Wideband Power Detection System Optimized for the UWB Spectrum” IEEE J. Solid-State Circuits, vol. 44, no. 2, pp 371-381, FEB. 2009.
[3] Y. Zhang, F. Zhang, Y. Shakhsheer, Jason D. Silver, Alicia Klinefelter, Manohar Nagaraju, “A Batteryless 19 W MICS/ISM-Band Energy Harvesting Body Sensor Node SoC for ExG Applications” IEEE J. Solid-State Circuits, vol. 48, no. 1, pp. 199-212, JAN. 2013.
[4] Y.-J Kim, “An Ultra-Low-Power RF Energy-Harvesting Transceiver for Multiple-Node Sensor Application” IEEE J. Trans Circuits Syst. II, vol. 62, no. 11, pp. 1028-1032, NOV. 2015.
[5] H.Bhamra, Y-J Kim,“A 24 μW, Batteryless, Crystal-free, Multinode Synchronized SoC “Bionode” for Wireless Prosthesis Control” IEEE J. Solid-State Circuits, vol. 50, no. 11, pp. 2714-2727, NOV. 2015.
[6] X. Yu, H. Rashtian, S. Mirabbasi, P. –P Pande, D. Heo”An 18.7-Gb/s 60-GHz OOK demodulator in 65-nm CMOS for Wireless Network-on-chip” IEEE Trans. Micro. Theory Techn., vol. 62, no. 3, pp. 799-806, MAR 2015.
[7] H. Mizutani, Y. Takayama, “DC-110-GHz MMIC Traveling-Wave Switch” IEEE Trans. Micro. Theory Tech., vol. 48, no. 5, pp. 840-845, MAY 2000.
[8] K.-Y Lin, Y.-J Wang, D.-C Niu , H. Wang “Millimeter-Wave MMIC Single-Pole-Double-Throw Passive HENT Switches Using Impedance-Transformation Networks” IEEE Trans. Microw. Theory Techn., vol. 51, no. 4, pp.1076-1085, MAY 2003.
[9] K.-Y Lin, W.-H Tu, P.-Y Chen ,H.-Y Chang, H.-Wang,”Millimeter-Wave MMIC Passive HEMT Switches Using Traveling-Wave Concept” IEEE Trans. Micro. Theory Tech., vol. 52, no. 8, pp. 1798-1808, AUG 2004.
[10] Z.-M Tsai, M.-C Yeh, H.-Y Chang, M.-F Lei, K.-Y Lin, C.-S Lin, H. Wang ”FET-integrated CPW and the Application in Filter Synthesis Design Method on Traveling-Wave Switch Above 100GHz” IEEE Trans. Micro. Theory Tech., vol. 54, no. 5, pp. 2090-2097, MAY 2006.
[11] S.-F Chao, H. Wang, C.-Y Su, John G.J. Chern”A 50 to 94-GHz CMOS SPDT Switch Using Traveling-Wave Concept” IEEE Micro. Wireless Compon. Lett., vol. 17, no. 2, pp. 130-132, FEB 2007.
[12] Mehmet Uzunkol and Gabriel M. Rebeiz”A Low-Loss 50-70GHz SPDT Switch in 90nm CMOS” IEEE J. Solid-State Circuits, vol. 45, no. 10, pp. 2003-2007, NOV. 2010.
[13] Mehmet Uzunkol and Gabriel M.Rebeiz”140-220 GHz SPST and SPDT Switch in 45nm CMOS SOI” IEEE Microw. Wireless Compon . Lett., vol. 22, no. 8, pp. 412-414, AUG 2012.
[14] Robert L, A.-C Ulusoy, Peter Song, John D. Cressler”A 94GHz 1.4Db Insertion Loss Single-Pole Double-Throw Switch Using Reverse-Saturated SiGe HBTs” IEEE Micro. Wireless Compon . Lett., vol. 24, no. 1, pp. 56-58, JAN 2014.
[14] F. Meng, K. Ma, K.-S Yeo, C.-C Boon, W.-M Lim, S. Xu”A 220-285GHz SPDT Switch in 65-nm CMOS Using Switchable Resonator Concept”IEEE Trans. THz. Sci. Tech. vol. 5,no 4, pp. 649-651, JULY 2015.
[15] J. Lee, Y. Chen, Y. Huang”A Low-Power Low-Cost Fully-Integrated 60-GHz Transceiver System With OOK Modulation and On-Board Antenna Assembly” IEEE J. Solid-State Circuits, vol. 45, no. 2, pp. 264-275, FEB. 2010.
[16] B. Cetinoneri, Yusuf A, Andy Fung, Gabriel M. Rebeiz,”W-Band Amplifiers With 6-Db Noise Figure and Milliwatt-Level 170-200-GHz Doublers in45-nm CMOS” IEEE Trans. Micro. Theory Tech., vol. 60, no. 3, pp. 692-701, MAR 2012.
[17] M. Uzunkol, W. Shin, Gabriel M. Rebeiz,”Design and Analysis of a Low-Power 3-6-Gb/s 55-GHz OOK Receiver With High-Temperature Performance” IEEE Trans. Micro. Theory Tech., vol. 60, no. 10, pp. 3263-3271, OCT 2012.
[18] C.-W Byeon, C.-H Yoon, C.-S Park,”A 67-mW 10.7-Gb/s 60-GHz OOK CMOS Transceiver for Short-Range Wireless Communications” IEEE Trans. Micro. Theory Tech., vol. 61, no. 9, pp. 3391-3400, OCT 2013.
[19] C.-L. Ko, C.-H. Li, C.-N. Kuo, M.-C. Kuo, D.-C. Chang, "A 210-GHz amplifier in 40-
nm digital CMOS technology," IEEE Trans. Micro. Theory Tech., vol. 161, no. 6, pp. 2438-2466 ,JUNE 2013.
[20] W.-Z Chen, T.-Y Lu, Y.-T Wang, J.-T Jian, Y.-H Yang, K.-T Chang,"A 160-GHz Frequency-Translation Phase-Locked Loop With RSSI Assisted Frequency Acquisition" IEEE Trans. Micro. Theory Tech., vol. 61, no. 6, pp. 1648-1655 ,JUNE 2014.
[21] Toshiyuki Umeda et al.,”A 950-MHz Rectifier Circuit for Sensor Network Tags With 10-cm Distance”, IEEE J. Solid-State Circuits, vol. 41, no. 1, pp 35-41, JAN. 2006
[22] Jamal Zbitou et al.,”Hybrid Rectenna and Monolithic Integrated Zero-Bias Microwave rectifier” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 147-152, JAN 2006.
[23] Amin Shameli et al.,” Power Harvester Design for Passive UHF RFID
Tag Using a Voltage Boosting Technique ” IEEE Trans. Microw. Theory Tech., vol. 55, no. 6, pp. 1089-1097, JAN 2007.
[24] Véronique Kuhn et al.,” A Multi-Band Stacked RF Energy Harvester With RF-to-DC Efficiency Up to 84%e ” IEEE Trans. Microw. Theory Tech., vol. 63, no. 5, pp. 1768-1778, MAY 2015.
[25] Hugo Gonçalves et al.,” Fully Integrated Energy Harvesting Circuit With−25-dBm Sensitivity Using Transformer Matching” IEEE J. Trans Circuits Syst. II, vol. 62, no. 5, pp. 446-450, MAY. 2015.