| 研究生: |
黃瀅晏 Ying-Yen Huang |
|---|---|
| 論文名稱: |
電腦支援同儕互教之活動與系統設計以增進小學數學解題溝通能力 Activity and System Design of Computer Supported Peer Tutoring for Enhancing Mathematics Communication Ability of Elementary Students |
| 指導教授: |
陳德懷
Tak-Wai Chan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 網路學習科技研究所 Graduate Institute of Network Learning Technology |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 數學解題溝通能力 、同儕互教 、自我解釋 、同儕解釋 |
| 外文關鍵詞: | mathematical communication ability, self-explanation, peer-explanation, peer tutoring |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
數學溝通能力的培養有助於學生反思和釐清數學概念,能夠提升學習者對於數學概念的理解和表達能力,增進數學的學習表現和解決問題之能力。教育部亦將「數學溝通能力」納入九年一貫課程綱要中,成為學生培養數學能力重要指標之一。然而台灣的教育仍是以升學與成就為取向,忽略了學生在學習過程中的表現,缺少對於學生數學溝通能力的培養,在傳統大班教學環境中,每位學生不見得都有機會能夠表達自己的學習想法,甚至是容易被忽略,因此有研究提出同儕互教能以相近的認知想法以及語言進行教與學的過程,促進學習者間的溝通有助於知識的吸收和理解。
因此,本研究以同儕互教為基礎發展培養國小學童數學解題溝通能力活動,讓學生輪流扮演教學者與被教者,透過電腦系統支援學生彼此相互解釋自己的數學解題想法,促進學生學習表達自我和理解他人之數學想法,並利用數學解題溝通能力測驗卷、問卷、實驗活動及訪談法進行資料收集與結果探討。研究發現同儕互教有助於增進學童之數學解題溝通能力,不同數學解題溝通能力成就之學生隨著同儕互教活動的進行,其能力表現皆不斷的提升且逐漸接近,而學生對於同儕互教亦持有正向的態度,認為同儕互教能夠幫助他們培養以及提升數學解題溝通能力。
Mathematical communication ability help students to reflect and clarify mathematical concepts can enhance learners’ mathematical understanding and expression, to promote mathematical learning performance and problem solving skills. Mathematical communication ability has become one of the important indicators to evaluate students’ mathematical ability. However, most of the math courses in elementary school rarely focus on culturing students’ mathematical communication ability, still learning based on an achievement-oriented way. In addition, each student may not have the opportunity to express their own ideas in the traditional teaching environment, even easy to be ignored. Previous researches have showed that peer tutoring could promote communication between learners contribute to the knowledge understanding, also enhance the learning performances.
Therefore, in this study, peer tutoring used as the main axis of research activities design, and also develop a system to support peer tutoring for enhancing mathematical communication ability of elementary students. Students prepare their own teaching materials and teach each other through the system, explaining their mathematical problem-solving ideas by using graphics, mathematical formula, literal interpretation, and oral, also use mathematical communication skill test, questionnaires, experiments, and interviews as the data collected. The research result has showed that peer tutoring could enhance students’ mathematical communication ability, and also students with different mathematical communication ability its performance are constantly ascend and gradually close. Besides, students holds a positive attitude towards peer tutoring, believe that peer tutoring can help them to enhance mathematical communication ability.
一、 英文文獻
Ainsworth, S., & Th Loizou, A. (2003). The effects of self-explaining when learning
with text or diagrams. Cognitive Science, 27, 669-681.
Bargh, J. A., & Schul, Y. (1984). On the cognitive benefits of teaching. Journal of
Education Psychology, 72, 593-604.
Barrows, H.S. & Tamblyn, R. (1980). Problem-B ased Learning: An Approach
to Medical Education (New York, Springer).
Bloom, B. S. (1984). The 2 sigma problem: The search for methods of group
instruction as effectives as one-to-one tutoring. Educational Researcher, 13, 4-16
Bossert, S. T. (1989). Cooperative activities in the classroom. Review of Research in
Education, 15, 225-250.
Chan, T. W. (2005). Computer supported learning by teaching. Unpublished article.
Chi, M.T.H., M. Bassok, M. Lewis, P. Reimann and Glaser,R. (1989). How Students
Study and Use Examples in Learning to Solve Problems. Cognitive Science, 145-182.
Chi, M., deLeeuw, N., Chiu, M., & LaVancher, C. (1994). Eliciting self-explanation
improves understanding. Cognitive Science, 18,439–477.
Chi, M. (2000). Self-explaining expository texts: The dual process of generating
inferences and repairing mental models.
Cole, P., & Chan, L. (1990). Method and strategies for special education. Sydney
Prentice Hall.
Collinwood, R. G.(1944). Reprint, London: Penguin Books.
Davis, G., and Rimm, S. (1985). Education of the gifted and talented. Englewood
Cliffs, NJ: Prentice-Hall.
Delquadri, J. C., Greenwood, C. R., Whorton, D., Carta, J. J., and Hall, R.V. (1986) .
Class wide peer tutoring. Exceptional Children, 52, 535-542.
Dufour-Janiver, B., Bednarz, N., & Belanger, M. (1987). Pedagogical considerations
concerning the problem of representation. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 110-120).
Hillsdale, NJ: Erlbaum.
Fantuzzo, J. W., King. J. A., & Heller, L. R. (1992) .Effects of reciprocal peer
tutoring on mathematics and school adjustment: A component analysis, Journal of Education Psychology, 84(3) , 331-339.
Ferrie, L., Fox, S., Hansen, A. Mooney, C. & Wrathmell, R. (2002). Primary
Mathematics: Knowledge and Understanding, Exeter: Learning Matters.
Fuchs, L. S., Fuchs, D., Hamlett, C. L., Phillips, N. B., Karns, K., & Dutka, S. (1997).
Enhancing students’ helping behavior during peer-mediated instruction with
conceptual mathematics explanations. Elementary School Journal, 97(3) , 223-249.
Fresko, B., & Kowalsky, R. (1998). Helping high school pupils in the PERACH
project: A comparison of mentoring and tutoring approaches. In S. Goodlad (Ed.), Mentoring and tutoring by students (pp. 33-48). London: Kogan Page.
Greenwood, C. R., Delquardri, J. C., and Hall, V. (1989). Longitudinal effects of
Class wide peer tutoring, Journal of Educational Psychology, 81, 3. 371–383.
Greenwood, C.R., and Delquadri, C. (1995). Classwide peer tutoring and the
prevention of school failure, Preventing School Failure, 39, 22-24.
Hall, R.V., Delquardri, J., Greenwood, C.R. and Thurston, L. (1982). The
importance of opportunity to respond to children’s academic success. In E. Edgar, N. Haring, J. Jenkins, & C. Pious (Eds.), Serving young handicapped children: Issues and research, 107–140, Baltimore, MD: University Park Press.
Hawthorne, E. M., & Smith, A. B. (1993). Improving teaching and learning in
community colleges: Guidelines for academic leaders. (ERIC Document Reproduction Service No. ED 354 039)
Heward, W. L., Herron, T. E., and Cooke, N. L. (1982) . Tutor huddle: Key element
in a classwide peer tutoring system. Elementary School Journal, 82, 115-123.
Hoyles,C.(1985).What is the point of group discussion in mathematics? Educational
Studies in Mathematics, 16, 205-214.
Hufferd-Ackles,K.,Fuson,K.C. ,& Sherin,M.G.(2004). Describing levels and
components of a math-talk learning community. Journal for Research in Mathematics Education, 33(2),81-116.
Huggins, B. & Maiste, T(1999). Communication in Mathematics. (ERICDocument
Reproduction Service No. ED 439016).
Julian, J., and Perry, F. (1967). Cooperation contrasted with intra-group and
inter-group competition. Sociometry, 30, 79-90.
Kennedy, L. M. & Tipps, S. (1997). Guiding Children’s Learning of Mathematics.
New York: Wadsworth.
King, A., Staffieri, A., & Adelgais, A. (1988). Mutual peer tutoring: Effects of
teaching children how to question and how to explain. American Educational Research Journal, 31(2) , 338-368.
Krulik S. & Rudnick, J. (1988): Problem Solving: A Handbook for Elementary School
Teachers. MA: Allyn and Bacon, Inc.
Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten
thousand words. Cognitive Science, 11, 65-99.
Maheady, L., Sacca, M. K., and Harper, G. F. (1986). Classwide student tutoring
teams(CSTT): Teacher’s training manual. Ann Arbor, MI: Michigan State University, Department of Counseling, Educational Psychology and Special Education.
Malone, T. W., and Lepper, M. R. (1987). Marking learning fun: a taxonomy of
intrinsic motivation for learning. In Snow, R. E. and Farr, M. J. (Eds.), Aptitude, learning, and instruction: Vol. 3. Cognitive and Affective Process Analyses. Hillsdale, NJ: Erlbaum.
Mason,J.(2000).Asking mathematical questions mathematically.International
Journal of Mathematical Educational in Science and Technology,31(1),97-111.
Maxwell, N., Bellisimo, Y., & Mergendoller, J. R. (1999, April). Structuring the
construction of knowledge: Modifying the medical problem-based learning model for high school students. Paper presented at the annual meeting of the American Educational Research Association,
Montreal, Canada.
Miller, S.R., Miller, P.F., Armentrout, J.A., & Flannagan, J.W. (1995). Cross-age peer
tutoring: A strategy for promoting self-determination in students with severe emotional disabilities/behavior disorders. Preventing School Failure, 39(4) , 32-37.
National Council of Teachers of Mathematics (1980). An agenda f or action:
Recommendations f or school mathematics of the 1980s.
Rest on, VA: NCTM
National Council of Teachers of Mathematics (1989). Curriculum and Evaluation
standards for school mathematics. The National Council of Teachers of Mathematics, Inc.
National Council of Teachers of Mathematics (1991). Professional standards for
teaching mathematics. Rest on, VA: Author.
Polya, G. (1957): How to Solve It? Princeton: Princeton University Press.
Rorty, R.(1979). Philosophy and Mirror of Nature. Princeton: Princeton University
Press.
Roscoe, R.D., & Chi, M.T.H. (2004). The influence of the tutee in learning by peer
tutoring. In the Twenty-sixth Cognitive Science Proceedings.
Roy, M., & Chi, M. T. H. (2005). The self-explanation principle in multimedia
learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia
learning (pp. 271-286). Cambridge: Cambridge University Press
Roy, M., & Chi, M. T. H. (2005). The self-explanation principle in multimedia
learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia
learning (pp. 271-286). Cambridge: Cambridge University Press
Striggins, R. & Higgins, K. M. (1992). Assessing mathematical power. Portland, Dregon: Northwest Regional Educational Laboratory.
Topping, K. (1988). The peer tutoring handbook: Promoting cooperative
learning. London: Croom Helm.
Turman, S. K., & Widerstrom, A. H.(1990)Infants and young children withspecial
needs:A developmental and ecological approach(2nd ed). Baltimore :Paul H. Brookes Publishing Co.
Uesaka, Y., & Manalo, E. (2011). The effects of peer communication with diagrams
on students’ math word problem solving processes and outcomes. In L. Carlson, C. Hoelscher, & T. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive Science Society (pp. 312–317). Austin, TX: Cognitive Science Society.
Whittemore, I. C. (1924). The influence of competition on performance: an
experimental study. Journal of Abnormal and social Psychology, 19, 236-253.
二、 中文文獻
吳榮豐(2005)同儕輔助交互是同儕教學運用在國小分數之學習環境設計。國立中央大學網路學習科技研究所,未出版,中壢。
李婉鳳(2006)透過課室討論文化的教學促進四年級學童數學溝通能力表現之研究。新竹教育大學碩士論文,未出版, 新竹。
林育聖(2002)。自我解釋對程式語言IF敘述學習的影響。台北市國立台灣師範大學資訊工程研究所碩士論文,未出版,台北市。
林碧珍、蔡文煥、李佳珍和柯政毅(2000)。實踐學生的數學日記對教師擬題與不提的改變。八十九年度師範學院教育學術論文發表會論文集,國立新竹師範學院。
林碧珍(2001)。協助教師實踐學生數學學習歷程檔案之行動研究。新竹師院學報,14,163-213
柯政毅(2001)數學歷程檔案評量實施下學生數學溝通的能力-以六個個案探討。新竹師範學院碩士論文,未出版, 新竹。
張俊紳(1993)。促進教室內的積極討論。國教之聲,27(1),43-48。
張瓊文(2001)。同儕教導對國小聽覺障礙國語文學習成效之研究。國立嘉
義大學國民教育研究所碩士論文,未出版,嘉義。
教育部(2003)。國民中小學九年一貫正式綱要。台北: 教育部。
許淑珠(2005)。國小二年級學生數學溝通能力之行動研究。國立中山大學教育
研究所碩士論文,未出版,高雄。
游麗卿(1999a)Vygotsky社會文化歷史理論:搜集和分析教室社會溝通活動的對話及其脈絡探究概念發展:國教學報,11,230-258。
游麗卿(1999)。教室溝通活動的實施:老師如何運用小組成員的互動培養學生溝通知能。班級經營,4(3),10-21。
游麗卿(1999)。 小學一年級學生在數學課所表現出的溝通能力。發表於八十八度師範學院教育學術論文發表會,台北師範學院。
詹雅淳(2002)。同儕個別教學對國中智能障礙學生日常生活技能學習效果
之研究。彰化師範大學,未出版,彰化。
蔡慧玲(2001)。一個國小低年級教師引導學生說明數學解題想法的分析與批判。
國立台南師範學院國民教育研究所碩士論文,未出版,台南。
簡幸如(2005)。數位遊戲設計之教學模式建構。國立中央大學學習與教學
研究所,未出版,中壢。
鍾靜(1996)。數學教室文化的新貌。發表於國立嘉義師範學院八十四學年度
數學教育研討會,嘉義。