| 研究生: |
王泰傑 Tai-Jie Wang |
|---|---|
| 論文名稱: |
以BaCe0.6Zr0.2Y0.2O3-δ為骨架浸潤La0.6Sr0.4Co0.8Fe0.2製備為複合陰極 應用於質子傳導型SOFC之可行性研究 La0.6Sr0.4Co0.8Fe0.2O3-δ cathodes deposited on BaCe0.6Zr0.2Y0.2O3-δ by infiltration for proton-conducting solid oxide fuel cells |
| 指導教授: |
林景崎
Jing-Chie Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 127 |
| 中文關鍵詞: | 固態氧化物燃料電池 、P-SOFC 、浸潤法 、複合陰極 、電化學交流阻抗 |
| 外文關鍵詞: | Composite cathodes, Electrochemical AC impedance spectroscopy |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用固態反應法製備之電解質BCZY粉末,以濕行星式球磨將粒徑減小增加表面積作為陰極骨架材料,將三種不同燒結溫度作為變數個別為1000 ℃、1100 ℃、1200 ℃,製備出具有足夠孔隙率且與電解質連接性良好的BCZY陰極骨架,以最佳的燒結參數1100 ℃進行後續之浸潤實驗。浸潤溶液使用兩種配方進行比較,一為添加甘胺酸做為螯合劑並使用乙醇做為界面活性劑,為燃燒合成法之浸潤溶液配方,另一為使用乙二醇使前驅溶液脂化,烘乾後添加乙二醇單丁醚作為界面活性劑,以熔膠凝膠法之浸潤溶液配方,進行表面形貌、微觀結構以及孔隙率之探討,接著提升浸潤溶液負載量增加電化學活性位點,並獲得製備複合陰極之最佳負載量。
經由I-V直流極化曲線和電化學交流阻抗頻譜進行深入分析,以瞭解不同陰極結構在質子傳輸型固態氧化物燃料電池中的反應差異,隨著浸潤含量的提升可以增加三相界面的反應面積,導致極化阻抗之下降,並且得知過度的添加會造成孔隙率的不足,使陰極端氧氣無法充分擴散,進行氧還原反應造成額外阻抗的產生。
最佳效能參數為使用乙二醇浸潤溶液,負載量為55.8 wt.%之複合陰極,全電池於800 ℃下測得之效能:開路電壓為0.96 V、功率密度為388 mW/cm2。
In this study, the electrolyte BCZY powder prepared by the solid-state reaction method was used. Ball milling was used to reduce the particle size and increase the surface area as the cathode framework material. For the BCZY cathode backbone with sufficient porosity and good connectivity with the electrolyte, the subsequent infiltration experiment was performed with the best sintering parameter at 1100 ℃. The infiltration solution is compared using two formulations. One is to add glycine as a chelating agent and ethanol as a surfactant, using the infiltration solution formulation of the combustion synthesis method, and the other is to use ethylene glycol to grease the precursor solution. After drying, add ethylene glycol monobutyl ether as a surfactant, use an infiltration solution formula the sol gel method to discuss the surface morphology, microstructure and porosity, and then increase the loading of the infiltration solution to increase electrochemical activity site, and obtain the optimal infiltrated loading on BCZY backbone for preparing the composite cathode.
Through the IV DC polarization curve and the electrochemical AC impedance spectrum for in-depth analysis to understand the reaction difference of different cathode structures in the proton transport solid oxide fuel cell, as the infiltration content increases, the reaction area of the three-phase interface can be increased. This leads to a decrease in polarization resistance, and it is known that excessive addition will result in insufficient porosity, so that oxygen at the cathode side cannot be fully diffused, and the oxygen reduction reaction proceeds to cause additional resistance. The best performance parameters are the composite cathode with a load of 55.8 wt.% using ethylene glycol infiltration solution, and the performance measured at 800 ℃ for the whole battery: open circuit voltage of 0.96 V and power density of 388 mW/cm2..
1. W.R. Grove, “XXIV. On voltaic series and the combination of gases by platinum”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 14(86-87): p. 127-130, 1839
2. L. Bi, S. Boulfrad, and E. Traversa, “Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides”, Chemical Society Reviews. 43(24): p. 8255-8270, 2014
3. S. Badwal, S. Giddey, C. Munnings, and A. Kulkarni, “Review of progress in high temperature solid oxide fuel cells”, ChemInform. 46(31): p. no-no, 2015
4. C. Zuo, S. Zha, M. Liu, M. Hatano, and M. Uchiyama, “Ba (Zr0. 1Ce0. 7Y0. 2) O3–δ as an electrolyte for low‐temperature solid‐oxide fuel cells”, Advanced Materials. 18(24): p. 3318-3320, 2006
5. L. Yang, C. Zuo, S. Wang, Z. Cheng, and M. Liu, “A novel composite cathode for low‐temperature SOFCs based on oxide proton conductors”, Advanced Materials. 20(17): p. 3280-3283, 2008
6. L. Yang, S. Wang, K. Blinn, M. Liu, Z. Liu, Z. Cheng, and M. Liu, “Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0. 1Ce0. 7Y0. 2–xYbxO3–δ”, Science. 326(5949): p. 126-129, 2009
7. L. Yang, Z. Liu, S. Wang, Y. Choi, C. Zuo, and M. Liu, “A mixed proton, oxygen ion, and electron conducting cathode for SOFCs based on oxide proton conductors”, Journal of Power Sources. 195(2): p. 471-474, 2010
8. J. Dailly, F. Mauvy, M. Marrony, M. Pouchard, and J.-C. Grenier, “Electrochemical properties of perovskite and A 2 MO 4-type oxides used as cathodes in protonic ceramic half cells”, Journal of Solid State Electrochemistry. 15(2): p. 245-251, 2011
9. W. Sun, Z. Zhu, Y. Jiang, Z. Shi, L. Yan, and W. Liu, “Optimization of BaZr0. 1Ce0. 7Y0. 2O3− δ-based proton-conducting solid oxide fuel cells with a cobalt-free proton-blocking La0. 7Sr0. 3FeO3− δ–Ce0. 8Sm0. 2O2− δ composite cathode”, international journal of hydrogen energy. 36(16): p. 9956-9966, 2011
10. L. Zhao, B. He, B. Lin, H. Ding, S. Wang, Y. Ling, R. Peng, G. Meng, and X. Liu, “High performance of proton-conducting solid oxide fuel cell with a layered PrBaCo2O5+ δ cathode”, Journal of Power Sources. 194(2): p. 835-837, 2009
11. B. Lin, H. Ding, Y. Dong, S. Wang, X. Zhang, D. Fang, and G. Meng, “Intermediate-to-low temperature protonic ceramic membrane fuel cells with Ba0. 5Sr0. 5Co0. 8Fe0. 2O3-δ–BaZr0. 1Ce0. 7Y0. 2O3-δ composite cathode”, Journal of power sources. 186(1): p. 58-61, 2009
12. Y. Lin, R. Ran, Y. Zheng, Z. Shao, W. Jin, N. Xu, and J. Ahn, “Evaluation of Ba0. 5Sr0. 5Co0. 8Fe0. 2O3− δ as a potential cathode for an anode-supported proton-conducting solid-oxide fuel cell”, Journal of Power Sources. 180(1): p. 15-22, 2008
13. J. Dailly, S. Fourcade, A. Largeteau, F. Mauvy, J.-C. Grenier, and M. Marrony, “Perovskite and A2MO4-type oxides as new cathode materials for protonic solid oxide fuel cells”, Electrochimica Acta. 55(20): p. 5847-5853, 2010
14. E. Fabbri, D. Pergolesi, and E. Traversa, “Materials challenges toward proton-conducting oxide fuel cells: a critical review”, Chemical Society Reviews. 39(11): p. 4355-4369, 2010
15. Z. Jiang, C. Xia, and F. Chen, “Nano-structured composite cathodes for intermediate-temperature solid oxide fuel cells via an infiltration/impregnation technique”, Electrochimica Acta. 55(11): p. 3595-3605, 2010
16. 黃鎮江, 燃料電池,修訂版. 全華科技圖書股份有限公司. 2004
17. 衣寶蓮, 燃料電池-原理與應用,初版. 五南圖書出版股份有限公司. 2005
18. S.C. Singhal and K. Kendall, High-temperature solid oxide fuel cells: fundamentals, design and applications. Elsevier. 2003
19. N.Q. Minh, “Solid oxide fuel cell technology—features and applications”, Solid State Ionics. 174(1-4): p. 271-277, 2004
20. S. Mcintosh and R.J. Gorte, “Direct hydrocarbon solid oxide fuel cells”, Chemical reviews. 104(10): p. 4845-4866, 2004
21. C. Xia and M. Liu, “Novel cathodes for low‐temperature solid oxide fuel cells”, Advanced Materials. 14(7): p. 521-523, 2002
22. R. Peng, T. Wu, W. Liu, X. Liu, and G. Meng, “Cathode processes and materials for solid oxide fuel cells with proton conductors as electrolytes”, Journal of Materials Chemistry. 20(30): p. 6218-6225, 2010
23. J. Kim, S. Sengodan, G. Kwon, D. Ding, J. Shin, M. Liu, and G. Kim, “Triple-conducting layered perovskites as cathode materials for proton-conducting solid oxide fuel cells”, ChemSusChem. 7(10): p. 2811-2815, 2014
24. Y. Song, Y. Chen, W. Wang, C. Zhou, Y. Zhong, G. Yang, W. Zhou, M. Liu, and Z. Shao, “Self-assembled triple-conducting nanocomposite as a superior protonic ceramic fuel cell cathode”, Joule. 3(11): p. 2842-2853, 2019
25. S.B. Adler, “Factors governing oxygen reduction in solid oxide fuel cell cathodes”, Chemical reviews. 104(10): p. 4791-4844, 2004
26. C. Li, K.C.K. Soh, and P. Wu, “Formability of ABO3 perovskites”, Journal of alloys and compounds. 372(1-2): p. 40-48, 2004
27. T. Ishihara, Perovskite oxide for solid oxide fuel cells. Springer Science & Business Media. 2009
28. H. Arai, T. Yamada, K. Eguchi, and T. Seiyama, “Catalytic combustion of methane over various perovskite-type oxides”, Applied catalysis. 26: p. 265-276, 1986
29. S. Ruddlesden and P. Popper, “New compounds of the K2NiF4 type”, Acta Crystallographica. 10(8): p. 538-539, 1957
30. M. Backhaus-Ricoult, “SOFC–a playground for solid state chemistry”, Solid State Sciences. 10(6): p. 670-688, 2008
31. X. Fang, G. Zhu, C. Xia, X. Liu, and G. Meng, “Synthesis and properties of Ni–SDC cermets for IT–SOFC anode by co-precipitation”, Solid State Ionics. 168(1-2): p. 31-36, 2004
32. L.M. Garcia, D.A. Macedo, G.L. Souza, F.V. Motta, C.A. Paskocimas, and R.M. Nascimento, “Citrate–hydrothermal synthesis, structure and electrochemical performance of La0. 6Sr0. 4Co0. 2Fe0. 8O3− δ cathodes for IT-SOFCs”, Ceramics International. 39(7): p. 8385-8392, 2013
33. S. Zha, Y. Zhang, and M. Liu, “Functionally graded cathodes fabricated by sol-gel/slurry coating for honeycomb SOFCs”, Solid State Ionics. 176(1-2): p. 25-31, 2005
34. M. Marinšek, K. Zupan, and J. Maeek, “Ni–YSZ cermet anodes prepared by citrate/nitrate combustion synthesis”, Journal of power sources. 106(1-2): p. 178-188, 2002
35. W. Zhou, Z. Shao, R. Ran, H. Gu, W. Jin, and N. Xu, “LSCF nanopowder from Cellulose–Glycine‐Nitrate process and its application in Intermediate‐Temperature Solid‐Oxide fuel cells”, Journal of the American Ceramic Society. 91(4): p. 1155-1162, 2008
36. Eg, G. Services, R.M.P. Company, and S.a.I. Corporation, Fuel Cell Handbook. DIANE Publishing. 2000
37. S.M. Haile, “Fuel cell materials and components”, Acta materialia. 51(19): p. 5981-6000, 2003
38. R. O'hayre, S.-W. Cha, W. Colella, and F.B. Prinz, Fuel cell fundamentals. John Wiley & Sons. 2016
39. Q.-A. Huang, R. Hui, B. Wang, and J. Zhang, “A review of AC impedance modeling and validation in SOFC diagnosis”, Electrochimica Acta. 52(28): p. 8144-8164, 2007
40. N.-Y. Hsu, S.-C. Yen, K.-T. Jeng, and C.-C. Chien, “Impedance studies and modeling of direct methanol fuel cell anode with interface and porous structure perspectives”, Journal of power sources. 161(1): p. 232-239, 2006
41. J. Garche, C.K. Dyer, P.T. Moseley, Z. Ogumi, D.A. Rand, and B. Scrosati, Encyclopedia of electrochemical power sources. Newnes. 2013
42. J. Mizusaki, Y. Mima, S. Yamauchi, K. Fueki, and H. Tagawa, “Nonstoichiometry of the perovskite-type oxides La1− xSrxCoO3− δ”, Journal of Solid State Chemistry. 80(1): p. 102-111, 1989
43. K. Lee and A. Manthiram, “Effect of cation doping on the physical properties and electrochemical performance of Nd0. 6Sr0. 4Co0. 8M0. 2O3− δ (M= Ti, Cr, Mn, Fe, Co, and Cu) cathodes”, Solid State Ionics. 178(13-14): p. 995-1000, 2007
44. C. Sun, R. Hui, and J. Roller, “Cathode materials for solid oxide fuel cells: a review”, Journal of Solid State Electrochemistry. 14(7): p. 1125-1144, 2010
45. M.J. Jørgensen and M. Mogensen, “Impedance of solid oxide fuel cell LSM/YSZ composite cathodes”, Journal of the Electrochemical Society. 148(5): p. A433, 2001
46. B. Steele, K. Hori, and S. Uchino, “Kinetic parameters influencing the performance of IT-SOFC composite electrodes”, Solid State Ionics. 135(1-4): p. 445-450, 2000
47. T. Hibino, A. Hashimoto, M. Suzuki, and M. Sano, “A solid oxide fuel cell using Y-doped BaCeO3 with Pd-loaded FeO anode and Ba0. 5Pr0. 5CoO3 cathode at low temperatures”, Journal of the Electrochemical Society. 149(11): p. A1503, 2002
48. Z. Jiang, L. Zhang, K. Feng, and C. Xia, “Nanoscale bismuth oxide impregnated (La, Sr) MnO3 cathodes for intermediate-temperature solid oxide fuel cells”, Journal of power sources. 185(1): p. 40-48, 2008
49. M.Y. Lu, R. Scipioni, B.-K. Park, T. Yang, Y.A. Chart, and S.A. Barnett, “Mechanisms of PrOx performance enhancement of oxygen electrodes for low and intermediate temperature solid oxide fuel cells”, Materials Today Energy. 14: p. 100362, 2019
50. T. Wang, C. Sun, F. Zhen, W. Song, R. Li, and Q. Zhen, “Decreasing the Polarization Resistance of BaCo0. 7Fe0. 2Nb0. 1O3–δ Cathodes by Infiltration of Ce0. 8Y0. 2O2–δ”, Fuel Cells. 16(5): p. 611-616, 2016
51. C. Sındıraç, A. Büyükaksoy, and S. Akkurt, “Electrochemical performance of La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3–Ce 0.9 Gd 0.1 O 2-δ composite SOFC cathodes fabricated by electrocatalyst and/or electrocatalyst-ionic conductor infiltration”, Journal of Sol-Gel Science and Technology. 92(1): p. 45-56, 2019
52. M. Shah and S. Barnett, “Solid oxide fuel cell cathodes by infiltration of La0. 6Sr0. 4Co0. 2Fe0. 8O3− δ into Gd-Doped Ceria”, Solid State Ionics. 179(35-36): p. 2059-2064, 2008
53. 葉哲均, 甘胺酸-硝酸燃燒合成法製備固態氧化物燃料電池陰極材料 La0. 8Sr0. 2MnO3, La0. 6Sr0. 4Co0. 2Fe0. 8O3 與其電化學性質之研究. 2014, National Central University.
54. B.-K. Lai, A.C. Johnson, H. Xiong, and S. Ramanathan, “Ultra-thin nanocrystalline lanthanum strontium cobalt ferrite (La0. 6Sr0. 4Co0. 8Fe0. 2O3− δ) films synthesis by RF-sputtering and temperature-dependent conductivity studies”, Journal of Power Sources. 186(1): p. 115-122, 2009
55. S. Ricote and N. Bonanos, “Enhanced sintering and conductivity study of cobalt or nickel doped solid solution of barium cerate and zirconate”, Solid State Ionics. 181(15-16): p. 694-700, 2010
56. C.J. Brinker and G.W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing. Academic press. 2013
57. F. He, T. Wu, R. Peng, and C. Xia, “Cathode reaction models and performance analysis of Sm0. 5Sr0. 5CoO3− δ–BaCe0. 8Sm0. 2O3− δ composite cathode for solid oxide fuel cells with proton conducting electrolyte”, Journal of Power Sources. 194(1): p. 263-268, 2009
58. R. Zeng and Y. Huang, “Enhancing surface activity of La0. 6Sr0. 4CoO3-δ cathode by a simple infiltration process”, International Journal of Hydrogen Energy. 42(10): p. 7220-7225, 2017