| 研究生: |
孫惟哲 Wei-Che Sun |
|---|---|
| 論文名稱: |
含氫之氧化鋅鋁透明導電膜的熱穩定性研究 Research of Thermal Stability on Hydrogen doped Al-doped Zinc Oxide Transparent Conductive Film |
| 指導教授: |
李正中
Cheng-Chung Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 透明導電膜 、氫 、氧化鋅鋁 |
| 外文關鍵詞: | TCO, AZO, Hydrogen |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用脈衝直流磁控濺鍍法(Pulsed DC Magnetron sputtering),使用價格便宜AZO靶材鍍製AZO(Al-doped zinc oxide)薄膜,在鍍膜過程中改變氫氣氣體流量,在室溫鍍製之下探討在不同氫氣體流量下,含氫AZO薄膜之電特性以及光學特性之改變,在通入適當流量之H2的情況下鍍製之含氫AZO單層膜,其最低電阻率為4.31×10-4 Ω-cm,而其在可見光波段之平均穿透率可達85.63%,相較於未通入H2的AZO單層膜,其電阻率5.55×10-3 Ω-cm下降了許多。
在含氫AZO薄膜在高溫退火之後,導電率會大幅下降,其主要原因是氫氣跑出膜層之外,載子濃度由1.7×1021cm-3大幅降低至7.51×1020cm-3。
由於含氫AZO薄膜在高溫退火下並不穩定,因此在其上加上一層AZO保護膜,以減少氫跑出膜層的機會。擁有50nm AZO保護膜的含氫AZO在經過500℃退火之後,由5.91×10-4Ω-cm 降低至5.63×10-4Ω-cm(減低4.7%)。而不具保護膜的情況之下,4.31×10-4Ω-cm 增加到7.79×10-4Ω-cm (增加66.8%)。
An Al-doped zinc oxide (AZO) transparent conductive film is deposited on glass by pulsed DC magnetron sputtering. We change the H2 flows during the deposition processes to investigate the change of the electrical and optical properties through the different H2 flows deposition at room temperature. The AZO film with 30sccm H2 flows during the deposition process can have low resistivity (4.31×10-4 Ω-cm) and high average transmittance in visible region (85.63%).
The Hydrogen doped AZO films can have great electrical and optical properties. However, the hydrogen in the AZO film is unstable in high temperature. The hydrogen would leave the AZO film during the thermal treatment. After 350℃ post annealing, the resistivity increases to 1.07×10-3 Ω-cm. And the carrier concentration decreases form 1.7×1021cm-3 to 7.51×1020cm-3.
In order to increase the thermal stability of the hydrogen doped AZO films. We deposit an AZO protection film above the hydrogen doped AZO films to reduce the chance of the hydrogen departing from AZO films. The resistivity of the hydrogen doped AZO film with 50nm protection film, decreases from 5.91×10-4Ω-cm to 5.63×10-4Ω-cm (decreasing 4.7%). Comparatively, the resistivity of the hydrogen doped AZO film without protection film, increases from 4.31×10-4Ω-cm to 7.79×10-4Ω-cm (increasing 66.8%).
[1] J.T. Littleton, U.S. Patent, 2,118,795 (1938)
[2] P. Frach, K. Goedicke, C. Gottfried and H. Bartzsch, “A versatile coating tool for reactive in-line sputtering in different pulse modes”, Surf. and Coat.Tech., 142–144, 628 (2001)
[3] D.G. Lim, D.H. Kim, J.K. Kim, O. Kwon, and K.J. Yang” Improved electrical properties of ZnO:Al transparent conducting oxide films using a substrate bias”, Superlattices and Microstructures, 39, 107 (2006)
[4] Shina Kuriki, and Toshitaka Kawashima, “Mechanical properties of Al2O3-doped (2 wt.%) ZnO films”,Thin Solid Films, 515, 8594 (2007)
[5] D. Horwat , A. Billard, “Effects of substrate position and oxygen gas flow rate on the properties of ZnO: Al films prepared by reactive co-sputtering”, Thin Solid Films, 515, 5444 (2007)
[6] Oliver Kluth, Gunnar Schope, Hans Werner Schock, “Comparative material study on RF and DC magnetron sputtered ZnO:Al films”, Thin Solid Films, 502, 311 (2006)
[7] T.L. Yang, D.H. Zhang, J. Ma, H.L. Ma, and Y. Chen, “Transparent conducting ZnO:Al films deposited on organic substrates deposited by r.f. magnetron sputtering”, Thin Solid Films, 326, 60 (1998)
[8] A.V. Singh, Manoj Kumar, “Al-doped zinc oxide (ZnO:Al) thin films by pulsed laser ablation”, J. Indian Inst. Sci., 81, 527 (2001)
[9] H.Y. Xu, Y.C. Liua, R. Mub, C.L. Shao, Y.M. Lu, D.Z. Shen and X.W.Fan, “F-doping effects on electrical and optical properties of ZnO nanocrystalline films”, Appl. Phys. Lett., 86, 123107 (2005)
[10] S.W. Xue, X.T. Zu, W.G. Zheng, X. Xiang, “Effects of Al doping concentration on optical parameters of ZnO:Al thin films by sol–gel technique”, Physics B, 381, 209 (2006)
[11] Xia Yueyuan,U. Akano, W.N. Lennard, “Fluorine concentration in doped tin oxide films prepared by chemical vapor deposition”, Appl. Physics Letter, 60, 335 (1992)
[12] G.C. Morris, A.E. McElnea, “Fluorine doped tin oxide films from spray pyrolysis of stannous fluoride solutions”, Applied Surface Science, 92, 163 (1992)
[13] T.Yamamoto and H.Katayama-Yoshida, “Solution using a co-doping method to unipolarity for the Fabrication of p-Type ZnO”, Japan Journal Apply Physic, 38, 166 (1999)
[14] Hideaki Agura, Akio Suzuki, Tatsuhiko Matsushita, Takanori Aoki, Masahiro Okuda, “Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition”, Thin Solid Films, 445, 263 (2003)
[15]L. Cao, L. Zhu, J. Jiang, R. Zhao, Z. Z. Ye and B. H. Zhao, “Highly transparent and conducting fluorine-doped ZnO thin films prepared by pulsed laser deposition”, Solar Energy Materials & Solar Cells, 95, 894 (2011)
[16]Tadatsugu Minami*, Shingo Suzuki, Toshihiro Miyata,” Transparent conducting impurity-co-doped ZnO:Al thin films prepared by magnetron sputtering” Thin Solid Films, 398 –399, 53 (2001)
[17] Liang-Yih Chen,Chau-Nan Hong, “Hydrogen-doped high conductivity ZnO films deposited by radio-frequency magnetron sputtering”, Applied Physics Letter, 85, 23 (2004)
[18] R.L.Weiher, “Electrical Properties of Single Crystals of Indium Oxide”, Journal of Applied Physics, 33, 2834 (1962)
[19] C. G. Fonstad and R. H. Rediker, “Electrical Properties of High‐Quality Stannic Oxide Crystals”, Journal of Applied Physics, 42, 2911 (1971)
[20] A. R. Hutson, “Electronic properties of ZnO”, Journal of Physics and Chemistry of Solids, 8, 467 (1959)
[21] P. S. Kireev, Semiconductor Physics, Mir, Moscow (1978)
[22] K.F. Huang, T.M. Uen, Y.S. Gou, C.R. Huang and H.C. Yang, “Temperature dependence of transport properties of evaporated indium tin oxide films”, Thin Solid Films, 148, 7 (1987)
[23] D.H. Zhang, H.L. Ma, “Scattering mechanisms of charge carriers in transparent conducting oxide films”, Applied Physics A, 62, 487 (1996)
[24] E. Conwell and V. F. Weisskopf, “Theory of Impurity Scattering in Semiconductors”, Physics Review, 77, 388 (1950)
[25] J. R. Bellingham, W. A. Phillips, C. J. Adkins, “Intrinsic performance limits in transparent conducting oxides”, Journal of Materials Science Letters, 11, 263 (1992)
[26] A. Sarkar, S. Ghosh, S. Chaudhuri and A.K. Pal, “Studies on electron transport properties and the Burstein-Moss shift in indium-doped ZnO films”, Thin Solid Films, 204, 255 (1991)
[27] I. Hamberg and C. G. Granqvist, “Band-gap widening in heavily Sn-doped In2O3”, Physics Review B, 30, 3240 (1984)
[28] Paul Drude, “Zur Elektronentheorie der Metalle”, Annalen der Physik, 306, 566 (1900)
[29] C. G. Van de Walle and J. Neugebauer, “Universal alignment of hydrogen levels in semiconductors, insulators and solutions”, Nature, 423, 626 (2003)
[30] J. Robertson and P. W. Peacock, “Doping and hydrogen in wide gap oxides”, Thin Solid Films, 445, 155 (2003)
[31] J. Chevallier, “Hydrogen and doping issues in wide band gap semiconductors”, Material Science and Engineering B, 71, 62 (2002)
[32] C. G. Van de Walle, “Hydrogen as a Cause of Doping in Zinc Oxide”, Physical Review Letters, 85, 1012 (2000)
[33] E. V. Lavrov, J. Weber, F. Borrnert, C. G. Van de Walle and R. Helbig, “Hydrogen-related defects in ZnO studied by infrared absorption spectroscopy”, Physical Review B, 66, 165205 (2002)
[34] L. Y. Chen, W. H. Chen, J. J. Wang, Franklin C. N. Hong and Y. K. Su, “Hydrogen-doped high conductivity ZnO films deposited by radio-frequency magnetron sputtering”, Applied Physics Letters, 85 5628 (2004)
[35] K. Zhang, F. Zhu, C.H.A. Huan and A.T.S. Wee, “Effect of hydrogen partial pressure on optoelectronic properties of indium tin oxide thin films deposited by radio frequency magnetron sputtering method”, Journal of Applied Physics, 86, 974 (1999)
[36]P. Sagar, M. Kumar, R.M. Mehra, “Influence of hydrogen incorporation in sol-gel derived aluminum doped ZnO thin films”, Thin Solid Films, 489, 94 (2005)
[37] W.F. Liu , G.T. Du, Y.F. Sun, J.M. Bian, Y. Cheng, “Effects of hydrogen flux on the properties of Al-doped ZnO films sputtered in Ar + H2 ambient at low temperature”, Applied Surface Science, 253, 2999 (2007)
[38] F. Ruske, T, V. Sittinger, W. Werner, B. Szyszka, K.-U. van Osten, K. Dietrich, “Hydrogen doping of DC sputtered ZnO:Al films from novel target material”, Surface & Coating Technology, 200, 236 (2005).
[39] J.R.Roth, Industrial plasma engineering volume 1: “Principles Institute of Physics” (1995)
[40] K. Badeker, Annals of Physics, (Leipzig), 22, 749 (1907)