| 研究生: |
詹景安 Chin-An Zhang |
|---|---|
| 論文名稱: |
淡水河口初級生產力及群聚呼吸率之研究 The research of primary production and community respiration in Danshuei River |
| 指導教授: |
許少瑜
Shao-Yiu Hsu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 水文與海洋科學研究所 Graduate Instittue of Hydrological and Oceanic Sciences |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 初級生產力 、群聚呼吸率 |
| 外文關鍵詞: | primary production, community respiration |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
淡水河位於台灣北部,氮營養鹽排放濃度比世界上多數大河都高[Wen et al., 2008],其優養化現象造成淡水河中下游河段往往有嚴重的低氧狀態發生。故本研究為了解造成低氧的原因,於2014年10月至2015年8 月觀測了淡水河中下游河段之營養鹽濃度與溶氧變化。此外為了解淡水河下游河段之氧氣消耗及生產的機制,本研究測定了群聚呼吸率(Community respiration, CR)和初級生產力(Primary production, PP)。
研究結果顯示淡水河口低氧區段發生於距出海口20-30公里處的中興橋(D3)至城林橋(D7),尤其秋季較為嚴重。淡水河氧氣消耗的主要過程CR平均為111.2 ± 14.3 mmol O2 m-3d-1且在D3-D7有較強烈的有機物分解,最高可達266.2 mmol O2 m-3d-1;氧氣產生過程PP平均為13.2 ± 4.03 mmol O2 m-3d-1,在柑園橋(D9)和三鶯橋(D10)為初級生產力最高的地點,最高可達50.4 mmol O2 m-3d-1。與世界其他河流相比,淡水河的PP較其他河流來的低且CR遠遠超過其他河流。
本研究的CR與PP數值與前人以淡水河生地化模式[林, 2015]所模擬出的結果比較,本研究的PP的分布與實測相似。但是CR實測值皆遠高於模式估算,高出25-120mmol O2 m-3d-1,顯示現實的氧氣消耗與生產機制較模式中所推估的還要複雜,仍需進一步研究驗證。
The Danshuei River is located in northern Taiwan, where the nitrogen concentration is higher than the most rivers in the world [Wen et al., 2008]. The eutrophication phenomena in the Danshuei River sometimes led to severe hypoxia. In order to understand the occurrence of the hypoxia, we surveyed nutrient concentration, chlorophyll a and dissolved oxygen in the Danshuei River during October 2014 to August 2015. In addition, I measured the community respiration rate (CR) and primary productivity (PP) to understand the mechanisms of the consumption and production of oxygen in the Danshuei River.
The results show hypoxic zones of the Danshui River occurred in 20-30 km away from the estuary, from the Zhongxing Bridge (D3) to the Chenglin Bridge (D7). The most serious hypoxia occurred in the fall. The averaged CR was 111.2 ± 14.3 mmol O2 m-3d-1. Higher oxygen consumption occurred at D3-D7 where the highest CR reached 266.2 mmol O2 m-3d-1. The averaged primary production was 13.2 ± 4.03 mmol O2 m-3d-1. The highest PP occurred at Ganyuan Bridge (D9) and the Sanying Bridge (D10) was 50.4 mmol O2 m-3d-1. Comparing the measured PP and CR in Danshuei River with that in other rivers around the world, we found that the measured PP in Danshuei river is relatively low, and the measured CR is much higher than that in other rivers.
Comparing to the biogeochemical modeling results, the distribution and magnitude of PP I measured were similar to previous modeling results in Danshui River [Lin, 2015]. However, the measured CR were all much higher than previous modeling results (25-120 mmol O2m-3d-1). The biogeochemical model used by Lin (2015) can not well describe the mechanism of oxygen consumption and production, and more investigations are needed for model verification.
英文參考文獻
Cai, W.-J., M. Dai, Y. Wang, W. Zhai, T. Huang, S. Chen, F. Zhang, Z. Chen, and Z. Wang(2004), The biogeochemistry of inorganic carbon and nutrient in the Pearl River estuary and the adjacent Northern South China Sea, Continental Shelf Research, 24(12), 1301-1319.
Casciotti, K. L., T. W. Trull, D. M. Glover, and D. Davies (2008), Constraints on nitrogen cycling at the subtropical North Pacific Station ALOHA from isotopic measurements of nitrate and particulate nitrogen, Deep-Sea Research Part Ii-Topical Studies in Oceanography, 55(14-15), 1661-1672.
Chai, F., R. C. Dugdale, T. H. Peng, F. P. Wilkerson, and R. T. Barber (2002), One-dimensional ecosystem model of the equatorial Pacific upwelling system. Part I: model development and silicon and nitrogen cycle, Deep-Sea Research Part Ii-Topical Studies in Oceanography, 49(13-14), 2713-2745.
Chen, C. C., F. K. Shiah, K. P. Chiang, G. C. Gong, and W. M. Kemp (2009), Effects of the Changjiang (Yangtze) River discharge on planktonic community respiration in the East China Sea, J Geophys Res-Oceans, 114.
Cole, J. J., B. L. Peierls, N. F. Caraco, and M. L. Pace (1993), Nitrogen loading of rivers as a human-driven process, in Humans as components of ecosystems, edited, pp. 141-157, Springer.
De Bie, M. J. M., A. Speksnijder, G. A. Kowalchuk, T. Schuurman, G. Zwart, J. R. Stephen, O. E. Diekmann, and H. J. Laanbroek (2001), Shifts in the dominant populations of ammonia-oxidizing beta-subclass Proteobacteria along the eutrophic Schelde estuary, Aquatic Microbial Ecology, 23(3), 225-236.
Duce, R. A., et al. (2008), Impacts of atmospheric anthropogenic nitrogen on the open ocean, Science, 320(5878), 893-897.
Galloway, J. N., H. Levy, and P. S. Kashibhatla (1994), Year 2020 - Consequences of Population-Growth and Development on Deposition of Oxidized Nitrogen, Ambio, 23(2), 120-123.
Galloway, J. N., Z. Dianwu, V. E. Thomson, and L. H. Chang (1996), Nitrogen mobilization in the United States of America and the People's Republic of China, Atmospheric Environment, 30(10-11), 1551-1561.
Galloway, J. N., W. H. Schlesinger, H. Levy, A. Michaels, and J. L. Schnoor (1995), nitrorgen-fixation –anthropogenic enhancement- environmental response, Global Biogeochemical Cycles, 9(2), 235-252.
Goolsby, D. A., W. A. Battaglin, B. T. Aulenbach, and R. P. Hooper (2000), Nitrogen flux and sources in the Mississippi River Basin, Science of the Total Environment, 248(2-3), 75-86.
Gurney, W., and R. M. Nisbet (1998), Ecological dynamics, Oxford University Press, Oxford.
Huang, W. R., and W. K. Jones (2001), Characteristics of long-term freshwater transport in Apalachicola Bay, Journal of the American Water Resources Association, 37(3), 605-615.
Frederic Gazeau1, Alberto Vieira Borges, Cristina Barron, Carlos M. Duarte, Niels Iversen, Jack J. Middelburg, Bruno Delille, Marie-Dominique Pizay, Michel Frankignoulle, Jean-Pierre Gattuso (2005), Net ecosystem metabolism in a micro-tidal estuary(Randers Fjord, Denmark): evaluation of methods. Marine Ecology Progress Series, 301, 23-41.
Frederic Gazeau , Jean-Pierre Gattuso, Jack J. Middelbugr, Natacha Brion, Laure-Sophie Schietyecatie, Michel Frankignoulle and Alberto Vieira Borges (2005), Planktonic and Whole System Metabolism in Nutrient-rich Estuary(the sheldt Estuary). Estuaries, 28, 868-883.
Kao, S. J., J. Y. Terence Yang, K. K. Liu, M. Dai, W. C. Chou, H. L. Lin, and H. Ren (2012), Isotope constraints on particulate nitrogen source and dynamics in the upper water column of the oligotrophic South China Sea, Global Biogeochemical Cycles, 26(2).
Liu, K.-K., L. Atkinson, R. A. Quiñones, and L. Talaue-McManus (2010), Biogeochemistry of continental margins in a global context, in Carbon and Nutrient Fluxes in Continental Margins, edited, pp. 3-24, Springer.
Liu, K. K., S. J. Kao, L. S. Wen, and K. L. Chen (2007), Carbon and nitrogen isotopic compositions of particulate organic matter and biogeochemical processes in the eutrophic Danshuei Estuary in northern Taiwan, Science of the Total Environment, 382(1), 103-120.
Liu, W.-C., S.-W. Chang, K.-T. Jiann, L.-S. Wen, and K.-K. Liu (2007), Modelling diagnosis of heavy metal (copper) transport in an estuary, Science of the total environment, 388(1), 234-249.
Loick, N., J. Dip., H. N. Doan, I. Liskow, and M. Voss (2007), Pelagic nitrogen dynamics in the Vietnamese upwelling area according to stable nitrogen and carbon isotope data, Deep Sea Research Part I: Oceanographic Research Papers, 54(4), 596-607.
Mackenzie, F. T., L. M. Ver, C. Sabine, M. Lane, and A. Lerman (1993), C, N, P, S global biogeochemical cycles and modeling of global change, in Interactions of C, N, P and S Biogeochemical Cycles and Global Change, edited, pp. 1-61, Springer.
Meybeck, M. (1982), Carbon, nitrogen, and phosphorus transport by world rivers, Am. J. Sci, 282(4), 401-450.
Milliman, J. D., and R. H. Meade (1983), World-wide delivery of river sediment to the oceans, The Journal of Geology, 1-21.
Milliman, J. D., and J. P. Syvitski (1992), Geomorphic/tectonic control of sediment to the oceans, The Journal of Geology, 1-21.
Monismith, S. G., W. Kimmerer, J. R. Burau, and M. T. Stacey (2002), Structure and flow-induced variability of the subtidal salinity field in northern San Francisco Bay, Journal of Physical Oceanography, 32(11), 3003-3019.
Morel, F. M., and J. G. Hering (1993), Principles and applications of aquatic chemistry, John Wiley & Sons.
Parsons, T.R, Maita, Y. and Lalli, C.M., 1984a. A manual of chemical and biological methods for seawater analysis. Pergamon Press, New York, USA, 173pp.
Pai, S.-C., Y.-J. Tsau, and T.-I. Yang (2001), pH and buffering capacity problems involved in the determination of ammonia in saline water using the indophenol blue spectrophotometric method, Analytica Chimica Acta, 434(2), 209-216.
Serret, P. Fernandez, E. Sostres, J. A. Anadon, R. (1999), Seasonal compensation of microbial production and respiration in a temperate sea. Marine Ecology Progress Series, 187,43-57
Smith, S. V., D. P. Swaney, L. Talaue-Mcmanus, J. D. Bartley, P. T. Sandhei, C. J. Mclaughlin, V. C. Dupra, C. J. Crossland, R. W. Buddemeier, and B. A. Maxwell (2003), Humans, hydrology, and the distribution of inorganic nutrient loading to the ocean, BioScience, 53(3), 235-245.
Strickland, J.D.H. and Parsons, T.R., 1972. A practical handbook of seawater analysis. Fisheries Resercher Board of Canada, Ottawa,Canada, 310pp.
Thomann, R. V., and J. A. Mueller (1987), Principles of surface water quality modeling and control.
Vitousek, P. M., J. D. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger, and D. Tilman (1997), Human alteration of the global nitrogen cycle: Sources and consequences, Ecological Applications, 7(3), 737-750.
Weiss, R. (1970), The solubility of nitrogen, oxygen and argon in water and seawater, paper presented at Deep Sea Research and Oceanographic Abstracts, Elsevier.
Welschmeyer, N. A. (1994), Fluorometric analysis of Chlorophyll-a in the Presence of Chlorophyll-B and Pheopigments, Limnology and Oceanography, 39(8), 1985-1992.
Wen, L. S., K. T. Jiann, and K. K. Liu (2008), Seasonal variation and flux of dissolved nutrients in the Danshuei Estuary, Taiwan: A hypoxic subtropical mountain river, Estuarine Coastal and Shelf Science, 78(4), 694-704.
Williams, D. (2004), NASA earth fact sheet, URL http://nssdc. gsfc. nasa. gov/planetary/factsheet/earthfact. html, 2.
Wolf-Gladrow, D. A. (2001), CO2 in Seawater: Equilibrium, Kinetics, Isotopes. Elsevier Oceanography Series, Elsevier Science & Technology.
Zeebe, R. E., and D. A. Wolf-Gladrow (2001), CO2 in seawater: equilibrium, kinetics, isotopes, Gulf Professional Publishing.
Zhang, J. (1996), Nutrient elements in large Chinese estuaries, Continental Shelf Research, 16(8), 1023-1045.
中文參考文獻
龔國慶, 1992. 台灣東北海域黑潮鋒面水文化學之研究. 國立台灣大學海洋科學研究所博士論文, 456.
陳鎮東, 1994. 海洋化學 國立編譯館 茂昌圖書有限公司, 229-260.
白書禎, 郭廷瑜, 鐘仕偉, 蘇宗德, 1998. 疊氮修正希巴辣光度測氧法及其在環境監測上應用. 化學(中國化學會) 56, 173-185.
孫毓璋, 彭竟凱, 2001. 大漢溪流域水體環境中重金屬及營養鹽分佈的探討. 台灣海洋學刊, 39、105-120.
謝蕙蓮, 2001. 由底棲群聚看淡水河河口生態品質. 台灣海洋學刊, 39、121-134.
彭明德, 2001. 淡水河之硝化現象模擬. 國立臺灣大學土木工程學研究所碩士論文 pp. 89.
黃金山, 2001. 淡水河流域防洪計畫. 台灣海洋學刊, A24-A42.
方天熹, 2001. 溶解態鋁在淡水河河口及近岸海域之分布. 台灣海洋學刊, 39、93-104.
黃蔚人, 2003. 淡水河系中上游河水中氮物種之時空變化. 國立台灣大學海洋研究所碩士論文, pp. 153.
游婉玲,2012. 東海南部夏季基礎生產力的短期變化. 國立台灣海洋大學海洋與環境生態研究所碩士論文,pp.99.
林宸宏,2015. 淡水河流域中下游生地化狀態之研究: 時間序列觀測及一維模式模擬. 國立中央大學水文與海洋科學研究所碩士論文,pp.104.
中華民國國家標準檢驗法, 2007. 深層海水檢驗法-磷酸鹽之測定. CNS 15091-15012, N 17001-15012.
中華民國國家標準檢驗法, 2007. 深層海水檢驗法-亞硝酸鹽之測定. CNS 15091-15015, N 17001-15015.
中華民國國家標準檢驗法, 2007. 深層海水檢驗法-矽酸鹽之測定. CNS 15091-15013, N 17001-15013.
中華民國國家標準檢驗法, 2008. 深層海水檢驗法-氨之測定. CNS 15091-15029, N 17001-15029.
中華民國國家標準檢驗法, 2008. 深層海水檢驗法-葉綠素a之測定. CNS 15091-15030, N 17001-15030.