| 研究生: |
李書恩 Shu-En Li |
|---|---|
| 論文名稱: |
雷射環狀模態及螢光生命週期於雙光子激發受激輻射耗損顯微術解析度提升之研究 The effects of donut mode and fluorescence lifetime on the resolution improvement of two-photon excitation STED microscopy |
| 指導教授: |
陳思妤
Szu-Yu Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 照明與顯示科技研究所 Graduate Institute of Lighting and Display Science |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 顯微術 、螢光 、受激輻射耗損顯微術 、環形光場 |
| 外文關鍵詞: | microscopy, STED microscopy, fluorescence, donut beam |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文是以雙光子激發受激輻射耗損顯微鏡為目標,討論環形光場分布以及樣品螢光生命週期對其解析度之影響,提出增加解析度的方法。在環形光場的討論中,本研究採用模擬及光場量測分析以不同方式所產生的環形光場及其在強聚焦下的光場變化,而螢光生命週期的研究則是模擬的方式來了解螢光樣品的選擇可以如何幫助解析度的提昇。此外,本研究已著手進行系統的建構,期望能透過實際系統的建構來證實上述論點之可行性。
This thesis is based on the two-photon excitation stimulated-emission depletion microscopy to discuss the effects of donut beam and fluorescence lifetime on the spatial resolution of this system and propose the methods to improve the resolution. In this research, both simulation and experimental measurements were applied to analyze the intensity distributions of donut beams generated in different ways and their distributions under tightly-focusing condition. On the other hand, only simulation was used to discuss the impact of fluorescence lifetime on the spatial resolution improvement. Finally, in order to obtain the experimental evidences of our results, the two-photon excitation stimulated-emission depletion microscopy was setup.
[1] S. Wischnitzer, Introduction to Electron Microscopy (Pergamon Press, 1981).
[2] J. Chen, Introduction to Scanning Tunneling Microscopy (University Press, Oxford, 1993).
[3] D. W. Pohl and D. Courjon, eds., Near-Field Optics (Kluwer Academic, Dordrecht;Boston, 1993).
[4] M. Abramowitz, “Fluorescence Microscopy: The Essentials,” Olympus America, Inc., New York, 43 (1993).
[5] C. J. R. Sheppard and D. M. Shotton, “Confocal Laser Scanning Microscopy,” BIOS Scientific Publishers Ltd., Oxford, UK, 106 (1997).
[6] W. Denk, J. H. Strickler, and W. W. WEBB, “Two-Photon Laser Scanning Fluorescence Microscopy,” Science 248 , 73-76 (1990).
[7] E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. Mikrosk. Anat. 9, 413 (1873).
[8] S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission:stimulated emission depletion fluorescence microscopy,“ Opt. Lett. 19, 780-782 (1994).
[9] S. W. Hell, M. Dyba1 and S. Jakobs, “Concepts for nanoscale resolution in fluorescence microscopy,” Curr. Opin. Neurobiol. 14, 599-609 (2004).
[10] S. W. Hell, “Far-field optical nanoscopy,” Science 316, 1153-1158 (2007).
[11] G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, “Sharper low-power STED nanocopy by time gating,” Nat. Methods 4, 1-3 (2011).
[12] E. Abbe, “Beitrage zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” M. Schultze’s Archiv fur mikroskopische Anatomie 4, 413-468 (1873).
[13] http://www.doitpoms.ac.uk/tlplib/diffraction/image.php
[14] R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: Improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185-196 (1998).
[15] B. Fain and P. Milonni, “Classical stimulated emission,” J. Opt. Soc. Am. B 4, 78-85 (1987).
[16] M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793-796 (2006)
[17] G. Moneron and S. W. Hell, “Two-photon excitation STED microscopy,” Opt. Express 17, 14567-14573 (2009).
[18] B. Valeur, Molecular Fluorescence: Principles and Applications (Wiley-VCH, Weinheim, 2002).
[19] http://photochemistryportal.net/home/index.php/category/principles/
[20] S. W. Hell, ‘‘Increasing the resolution of far-field fluorescence light microscopy by point-spread-function engineering,’’ in Topics in Fluorescence Spectroscopy, J. R. Lakowicz, Ed. 5, 361-422 (2002).
[21] T. A. Klar, E. Engel, and S. W. Hell, “Breaking Abbe’s diffraction resolution limit in fluorescence microscopy,” Phys. Rev. E 64, 066613 (2001).
[22] B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S.W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16, 4154-4162 (2008).
[23] D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution” Jour. of Microcopy 236, 35-43 (2009).
[24] K. I Willig, B. Harke, R. Medda, and S.W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4, 915-918 (2007).
[25] B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. Roy. Soc. A 253, 358-379 (1959).
[26] B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. Roy. Soc. A 253, 358–379 (1959).
[27] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular-momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185-8189 (1992).
[28] M. W. Bejersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123-132 (1993).
[29] T. Watanabe, M. Fujii, Y. Watanabe, N. Toyama, and Y. Iketaki, “Generation of a doughnut-shaped beam using a spiral phase plate,” Rev. Sci. Instrum. 75, 5131-5135 (2004).
[30] K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, No. 2, 77-87 (2000).
[31] Y. Y. Tzeng, S. W. Ke, C. L. Ting, Andy Y. G. Fuh, and T. H. Lin, “Axially symmetric polarization converters based on photo-aligned liquid crystal films,” Opt. Express 16, No. 6, 3768-3775 (2008).
[32] G. Moneron, R. Medda, B. Hein, A. Giske, V. Westphal, and S.W. Hell, “Fast STED microscopy with continuous wave fiber lasers,” Opt. Express 18, 1302-1309 (2010).
[33] A. Cser, K. Nagy and L. Biczok, “Fluorescence lifetime of Nile Red as a probe for the hydrogen bonding strength with its microenvironment,” Chem. Phys. Lett. 360, 473-478 (2002).
[34] http://products.invitrogen.com/ivgn/product/F8784?ICID==%3D%3D%3D%3D%3Dsearch-product