| 研究生: |
賴彥丞 Yean-Cheng Lai |
|---|---|
| 論文名稱: |
低放射性廢棄物最終處置場緩衝材料之潛變試驗及變形分析 |
| 指導教授: | 黃偉慶 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 140 |
| 中文關鍵詞: | 緩衝材料 、回脹壓力 、直接剪力試驗 、潛變參數 |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
低放射性廢棄物最終處置場在國際間採用多重障壁的設計理念,利用層層的處置設施隔絕放射性物質遠離生物圈。緩衝材料在多重障壁中扮演相當重要的角色,須具備低水力傳導度、適當的回脹壓力等。當處置場啟用後,未來可能受到地下水的入侵,緩衝材料可能受到影響改變原本預期的行為特性。
本研究主要分為兩部分,第一部分以MX-80膨潤土與K-V1膨潤土在不同乾密度下進行直接剪力試驗和單向度壓密試驗,模擬處置場初期荷重之影響。第二部分進行回脹壓力、水力傳導度試驗、飽和的應變/應力控制的直剪試驗與單向度壓密試驗,模擬處置場在飽和時之情況,最後使用有限元素軟體ABAQUS進行分析模擬。
研究結果顯示,(1)在回脹壓力上MX-80膨潤土較佳,因為MX-80膨潤土的蒙脫石含量高於K-V1膨潤土的關係;(2)MX-80膨潤土於高乾密度、高正向應力及飽和的直接剪力試驗中,比K-V1膨潤土有較佳的抗剪能力;(3)應力控制直剪顯示,施予剪應力越大,潛變發生的時間會加速;(4)單向度壓密試驗顯示,正向應力越大膨潤土的應變量也越大,潛變時間也會提前。
The low-level radioactive waste final disposal adopts the design concept of multiple barriers internationally, and uses layers of disposal facilities to isolate radioactive materials away from the biosphere. Buffer material play a very important role in multiple barriers system, and must have low hydraulic conductivity and appropriate swelling pressure. When the disposal site is enabled, the future may be subject to groundwater intrusion, buffer material may be affected by changes in the original expected behavior characteristic.
This study is mainly two parts. The first part uses MX-80 bentonite and
K-V1 bentonite at different dry density to conduct direct shear test and one dimensional compression test to simulate the effect of initial load at the disposal site. The second part conducts swelling pressure, hydraulic conductivity test, saturated strain/stress controlled direct shear test and one dimensional compression test to simulate the situation of the disposal site at saturation, and finally uses finite element software ABAQUS for analysis and simulation.
The results of the study show that (1) MX-80 bentonite is better in terms of swelling pressure, because the montmorillonite content of MX-80 bentonite is higher than that of K-V1 bentonite. (2) MX-80 bentonite in the direct shear test has high dry density, high normal stress and saturation, it has better shear resistance than K-V1 bentonite. (3) Stress control direct shear shows that the greater the applied shear stress, the faster the occurrence of creep will be accelerated. (4) The one dimensional compression test shows that the greater the normal stress, the greater the strain of bentonite and the earlier the creep time.
王明光,(2001),「環境土壤化學」,五南圖書出版。
王欣婷,(2003),「緩衝材料在深層處置場模擬近場環境下回脹行為基礎研究」,碩士論文,國立中央大學土木工程研究所,中壢。
台灣電力公司,(2009),低放射性廢棄物最終處置設施,概念設計 (B版)。
台灣電力公司,(2010),我國用過核子燃料最終處置初步技術可行性評估報 告。
台灣電力公司,(2014),用過核子燃料最終處置計畫,潛在處置母岩特性調查與評估階段-2010至2013年計畫整合報告。
台灣電力公司,(2015),建議候選場址概念設計報告。
李冠宏,(2015),「最終處置場近場環境對緩衝材料回脹壓力之影響」,碩士論文,國立中央大學土木工程研究所,中壢。
呂曉萱,(2020),「低放射性廢棄物最終處置場夯實回填材料之工程特性研究」,碩士論文,國立中央大學土木工程研究所,中壢。
陳文泉,(2004),「高放射性廢棄物深層地質處置緩衝材料之回脹行為研究」,博士論文,國立中央大學土木工程研究所,中壢。
陳憶婷,(2016),「低放射性廢棄物最終處置場回填材料長期穩定性之研究」,碩士論文,國立中央大學土木工程研究所,中壢。
張皓鈞,(2015),「低放射性廢棄物最終處置場工程障壁材料於未飽和/飽和環境下之長期穩定性研究」,博士論文,國立中央大學土木工程研究所,中壢。
趙杏媛、張有瑜,(1990),「黏土礦物與黏土礦物分析」,海洋出版社,北京。
楊慶、張惠珍,(2004),「非飽和膨潤土抗剪強度的試驗研究」,岩石力學與工程學報,大連。
賈靈艷、張虎元、張明,(2013),「混合型緩衝回填材料抗剪強度特性研究」,地下空間與工程學報,蘭州。
Abdullah, W.S., Alshibli, K.A., and Al-Zou'bi, M.S. (1999). “Influence of pore water chemistry on swelling behavior of compacted clays.” Applied Clay Science, 15, 447-462.
Åkesson, M., Jacintao, A.C., Gatabin, C., Sanchez, M., and Ledesma, A. (2009). “Benonite THM behaviour at high temperatures: experimental and numerical analysis.” Géotechnique, 59(4), 307-318.
ASTM D422-63. (2007). “Standard test method for particle-size analysis of soils.” PA.
ASTM D584-10. (2010). “Standard test method for wool content of raw wool – laboratory scale.” PA.
ASTM D1141-98. (2013). “Standard practice for the preparation of sub-stitute ocean water.” PA.
ASTM D2216-10. (2010). “Standard test methods for laboratory deter-mination of water (moisture) content of soil and rock by mass.” PA.
ASTM D3080-11. (2014). “Standard test method for direct shear test of soils under consolidated drained conditions.” PA.
ASTM D4318-10. (2010). “Standard test methods for liquid limit, plastic limit, and plasticity index of soils.” PA.
ASTM D4972-13. (2013). “Standard test method for pH of soils.” PA.
ASTM D5890-11. (2011). “Standard test method for swell index of clay mineral component of geosynthetic clay liners.” PA.
Arintha, I. D. (2019). “Experimental and Numerical Analysis on Creep of Buffer Material in Nuclear Waste Deposition Hole.” Unpublished Master thesis, National Central Univ., Taiwan.
Borgesson, L., Hokmark, H., & Karnland, O. (1988). Rheological properties of sodium smectite clay. Swedish Nuclear Fuel and Waste Management Co. Stockholm, Sweden. (SKB TR-88-30).
Bucher, F., & Müller-Vonmoos, M. (1989, June). Bentonite as a containment barrier for the disposal of highly radioactive wastes. Applied Clay Science, 4(2), 157-177.
Chen, Y.G., Zhu, C.M., Ye, W.M., Cui, Y.J., and Chen, B. (2016). “Effects of solution concentration and vertical stress on the swelling behavior of compacted GMZ01 bentonite.” Applied Clay Science, 124-125, 11-20.
Claret, F., Bauer, A., Schäfer, T., Griffault, L., and Lanson, B. (2002). “Experimental investigation of the interaction of clays with high pH solutions: a case study from the Callovo-Oxfordian formation, Meuse-Haute Marne underground laboratory (France).” Clays and Clay Minerals, 50, 633-646.
Cuevas, J., Villar, M., Martyn, M., Cobena, J.C., and Leguey, S. (2002). “Thermohydraulic gradients on bentonite: distribution of soluble salts, microstructure and modification of the hydraulic and mechanical behaviour.” Applied Clay Science, 22, 25-38.
Cuevas, J., Fernandez, R., Sanchez, L., Vigil de la Villa, R., Rodriiguez, M., and Leguey, S. (2007). “Reactive diffusion front driven by an alkaline plume in compacted Mg homoionic bentonite.” Clays in Natural & Engineered Barriers for Radioactive Waste Confinement: International Meeting, Lille, France, 509-510.
Cuisinier, O., Masrouri, F., Pelletier, M., Villieras, F., and Mosser-Ruck, R. (2008). “Microstructure of a compacted soil submitted to an alkaline plume.” Applied Clay Science, 40, 159-170.
Delage, P., Marcial, D., Cui, Y.J., and Ruiz, X. (2006). “Ageing effects in the compacted bentonite: a microstructure approach.” Géotechnique, 56(4), 291-304.
D.C.S Simulia. (2016). ABAQUS/CAE. Dassault Systems. Providence, RI, USA.
Freiesleben, H. (2013). Final Disposal of Radioactive Waste. EPJ Web of Conferences, Vol. 54.
Manepally, C., Fedors, R., Basagaoglu, H., Ofoegbu, G., & Pabalan, R. (2011). Coupled Processes Workshop Report. U.S. Nuclear Regulatory Commission. ( NRC–02–07–006 ).
Mitchell, J. (1976). Fundamentals of soil behavior. John Wiley and Sons. New York.
Pintado, X., Mamunul, H. M., & Martikainen, J. (2013). Thermo-Hydro-Mechanical Tests of Buffer Material. . POSIVA Oy. Eurajoki, Finland. (POSIVA 2012-49).
POSIVA Oy. (2008). Safety Case Plan. POSIVA. Eurajoki, Finland. (POSIVA 2008-05).
Pusch, R. (1986). Settlement of canisters with smectite clay envelopes in deposition holes. . Swedish Nuclear Fuel and Waste Management Co. Stockholm, Sweden. (SKB TR-86-23).
Pusch, R. (1999). Is montmorillonite-rich clay of MX-80 type the ideal buffer for isolation of HLW? . Swedish Nuclear Fuel and Waste Management Co. Stockholm, Sweden. (SKB TR-99-33).
Pusch, R. (2015). Bentonite Clay. Environmental Properties and Applications. CRC Press. Boca Raton, Florida.
Pusch, R., & Adey, R. (1999). Creep in buffer clay . Swedish Nuclear Fuel and Waste Management Co. Stockholm, Sweden. (SKB TR-99-32).
Pusch, R., & Adey, R. A. (1986). Settlement of Clay-enveloped Radioactive canisters. Applied Clay Science, Vol. 1, 353-365.
Pusch, R., Börgesson, L., & Erlström, M. (1987). Alteration of isolating properties of dense smectite clay in repository environment as exemplified by seven pre-quarternary clays . Swedish Nuclear Fuel and Waste Management Co. Stockholm, Sweden. (SKB TR 87-29).
Rutqvist, J., & Tsang, C.-F. (2008). Review of SKB’s Work on Coupled THM Processes Within SR-Can. SKI Report 2008:08.
Savage, D., Lind, A., & Arthur, R. C. (1999). Review of Properties and Uses of Bentonite as a Buffer and Backfill Material. Swedish Nuclear Power Inspectorate. (SKI Report 2008:08).
SKB. (1995). Treatment and final disposal of nuclear waste: Programme for encapsulation, deep geologic disposal, and research, development and demonstration. Swedish Nuclear Fuel and Waste Management Co. Stockholm, Sweden. (SKB RD&D Programme 95).
SKB. (2006). Long-term safety for KBS-3 repositories at Forsmark and Laxemar – a first evaluation. Swedish Nuclear Fuel and Waste Management Co. Stockholm, Sweden. (SKB TR 06-09).
SKB TR11-01. (2011). “Long-term safety for the final repository for spent nuclear fuel at Forsmark: Main report of the SR-Site project Volume I.” SKB Technical Report TR-11-01, Svensk Kärnbränslehantering AB.
Szilvásszy, Z. (1984). Ch 5. Soils engineering for design of ponds, canals and dams in aquaculture, Foodand Agricultural Organization, Research Centre for Water Resources Development, Budapest, Hungary.
Turrero, M.J., Escribano, A., Torres, E., and Martin, P.L. (2007). Con-crete/Febex bentonite interaction: preliminary results on short-term column experiments.” Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, International Meeting, Lille, France.
Villar, M.V., Cuevas, J., and Martin, P.L. (1996). “Effects of heat/water flow interaction on compacted bentonite: Preliminary results.” Engineering Geology, 41, 257-267.
Villar, M.V., and Lloret, A. (2004). “Influence of temperature on the hydro-mechanical behaviour of a compacted bentonite.” Applied Clay Science, 26, 337-350.
Villar, M.V., Sánchez, M., and Gens, A. (2008). “Behaviour of a bentonite barrier in the laboratory: experimental results up to 8 years and numerical simulation.” Physics and Chemistry of Earth, 33, 476-485.
Ye, W.M., Zheng, Z.J., Chen, B., Chen, Y.G., Cui, Y.J., and Wang, J. (2014). “Effects of pH and temperature on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite.” Applied Clay Science, 101, 192-198.
Yong, R.N., and Benno, P.W. (1975). Soil Properties and Behavior, Elsevier, NewYork.
Yong, R.N., Mohammed, A.M.O., Shooshapasha, I., and Onofrei, C. (1997). “Hydrothermal performance of unsaturated bentonite-sand buffer material.” Engineering Geology, 47, 351-365.
Zhu, C.M., Ye, W.M., Chen, Y.G., Chen, B., and Cui, Y.J. (2013). “Influence of salt solutions on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite.” Engineering Geology, 166, 74-80.