| 研究生: |
林陽昇 Indra Stevanus |
|---|---|
| 論文名稱: | RICE CROP MAPPING AND YIELD ESTIMATION USING MULTI-TEMPORAL MODIS IMAGERY IN WEST JAVA PROVINCE, INDONESIA |
| 指導教授: |
陳繼藩博士
Prof. Chi Farn Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
太空及遙測研究中心 - 遙測科技碩士學位學程 Master of Science Program in Remote Sensing Science and Technology |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 中尺度影像光譜輻射儀 、多時序 、稻作 、產量估算模式 |
| 外文關鍵詞: | MODIS, time-series, rice crop, yield estimation model |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
稻米是印尼主要的糧食作物。稻米生長區域的資訊有助於相關的單位對國家糧食的供銷與安全發展出更好的策略。本研究主要的目的即是以中尺度影像光譜輻射儀(MODIS)資料推導的常態化差異植生指數(NDVI)來進行稻區分布的製圖並估算稻米的產量。研究區位於印尼西爪哇省的西北部,是印尼主要稻米生產的區域之一,範圍包含了九個行政區,涵蓋面積約為13,155平方公里。
在本研究中2008年與2011年的資料被個別處理,研究方法包括兩個部分:稻作分區製圖與稻米產量模型建置。稻作分區製圖需進行四個步驟: (1)資料預處理:利用小波分析建立MODIS植生指數的平滑時間序列,包括NDVI、地表水指數(LSWI)、常態化建成區指數(NDBI);(2)進行影像遮罩移除非稻作區域; (3)以支援向量機進行稻作分類; (4)利用地面參考資料、稻作區統計資料進行分類的精度評估;而建立稻米產量模型包含了三個步驟:(1)像元NDVI剖線最大分蘗日的萃取;(6)建立稻米產量模式;(7) 稻米產能模式的誤差分析。
分類的結果顯示:2008年MODIS推估稻作分區的總體分類精度為86.5%、kappa值為 0.73; 而2011年的總體分類精度為86.4%、kappa值為0.728。在稻米產量估算上,本研究建立了七個稻米測試模式(在NDVI時序剖線中稻作分蘗盛期的:最大分蘗日點,最大分蘗日點+鄰近2個點、最大分蘗日點+鄰近4個點、最大分蘗日點+鄰近6個點)。其中最大分蘗日點+鄰近2個點的預測模式有最佳的預測結果,原因為研究區中農民在稻作種植時間上的差異。推估的稻米產量顯示了R2為0.77的高相關與均方根誤差為0.414噸/公頃。本研究顯示使用MODIS時序影像進行稻作分區與稻米產量估測的可靠性與合理性。
Rice is the staple food in Indonesia. Information on rice crop growing areas is useful for relevant agencies to devise better strategies to ensure security and stability of national food. The main objectives of this study are to map rice cropping systems and estimate the rice yield using normalized difference vegetation index (NDVI) generated from moderate resolution imaging spectroradiometer (MODIS) data in the northern part of West Java Province, Indonesia. This study area is one of the key rice producing regions in Indonesia. It consists of nine regencies, covering approximately 13,155 km2.
The data were processed for 2008 and 2011. The methodology of this study comprises two main parts: rice crop mapping and rice yield model establishment. To map rice area, four steps need to be performed: (1) data preprocessing to construct smoothed time-series MODIS vegetation indices, including: NDVI, land surface water index (LSWI), normalized difference built-up index (NDBI); using wavelet transform, (2) image masking to eliminate non-crop areas, (3) rice crop classification using the supervised Support Vector Machine (SVM) classifier, and (4) classification accuracy assessment using the ground reference data and rice area statistics. To establish a rice yield model, three steps were needed to be performed: (1) heading date NDVI extraction, (2) rice yield modeling, and (3) error analysis of rice yield model.
The classification results showed that the overall accuracy and Kappa coefficient of MODIS-derived rice area in 2008 are 86.5% and 0.73 respectively, while in 2011 are 86.4% and 0.728 respectively. For rice yield estimation model established from this study, several models (one, three, five, and seven points of NDVI value in heading period) were generated and the three points rice yield model was chosen as the best model since it represent the shifted period of planting date for the farmers in the study area. The rice yield model showed high correlation coefficient (R2) of 0.72 and RMSE of 0.418 ton/ha. The study results indicated that the rice crop mapping and yield estimation model using MODIS imagery was reliable and reasonable.
Ahl, D. E., Gower, S. T., Burrows, S. N., Shabanov, N. V., Myneni, R. B., and Knyazikhin, Y., 2006. Monitoring spring canopy phenology of a deciduous broadleaf forest using MODIS. Remote Sensing of Environment, 104, pp. 88-95.
Ahlrichs, J. S., Bauer, M. E., 1983. Relation of agronomic and multispectral reflectance characteristics of spring wheat canopies. Agronomy Journal, 75, 987–993.
Anderson, G., and Yang, C., 1996. Preliminary Field Results, 1995, Mapping grain sorghum management zones using aerial videography, ARS remote sensing research unit. This article was extracted from the following paper: Yang, C. and Anderson, G.L., 1996. Determining Within-Field Management Zones for Grain Sorghum using Aerial Videography, in: Proceedings, The 26th Symposium on Remote Sensing of Environment, Vancouver, B.C., March 25-29, 1996. (In Press).
Ceccato, P., Flasse, S., Tarantola, S., Jacquemoud, S., and Gregoire, J. M., 2001. Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sensing of Environment, 77: 22 − 33.
Chang, J., Hanse, M. C., Pittman, K., Carrol, M., and Dimiceli, C., 2007. Corn and soybean mapping in the United States using MODIS time-series data sets. Agronomy Journal, 99:1654-1664.
Chaovalit, P., Gangopadhyay, A., Karabatis, G., and Chen, Z., 2011. Discrete Wavelet Transform-based time series analysis and mining. ACM Computing Surveys. Vol. 43, No. 2, Article 6.
Chen, C. F., Son, N. T., Chang, L. Y., and Chen, C. R., 2011. Classification of rice cropping systems by empirical mode decomposition and linear mixture model for time-series MODIS 250 m NDVI data in the Mekong Delta, Vietnam. International Journal of Remote Sensing, Vol. 32, No. 18, 5115-5134.
Confalonieri, R., Rosenmund, A. S., and Baruth, B., 2009. An improved model to simulate rice yield. Agronomy Sustainable Development Journal, 29, 463-474.
Congalton, R. G., and Green, K., 1999. Assessing the accuracy of remotely-sensed data: principles and practices. Lewis Publishers, Florida.
Cortes, C., and Vapnik, V. N., 1995. Support vector networks, Mach. Learn. 20, 273–297.
Covey, R. J., 1999. Remote sensing in precision agriculture: an educational primer. Iowa State University, United States.
Cristianini, J. N., and Taylor, S., 2000. An introduction to Support Vector Machines. Cambridge University Press, London.
Doraiswamy, P. C., Sinclair, T. R., Hollinger, S., Akhmedov, B., Stern, A., and Prueger, J., 2005. Application of MODIS-derived parameters for regional crop yield assessment. Remote Sensing of Environment, 87:192-202.
Earl, Wheeler, and Blackmore, 1997. Precision farming - The management of variability. The Journal of the Institution of Agricultural Engineers, Landwards, Vol. No.4 pp18-23.
FAO, 2002. Rice Information. FAO, Rome.
Gualtieri, J. A., and Cromp, R. F., 1998. Support Vector Machines for hyperspectral remote sensing classification. Proceedings of the 27th AIPR Workshop: Advances in Computer Assisted Recognition, Washington, DC, October 27, 221-232.
Hanggono, A., 2000. Use of remote sensing techniques and geographic information unit in the interpretation and monitoring of land resource availability. Preceedings of the discussion and communication meeting of results of soil and agro-climate. Soil and Agro-Climate Research Center. Page 95-128. (In Indonesian)
Harris, P. M., and Ventura, S. J., 1995. The integration of geographic data with remotely sensed data imagery to improve classification in an urban area. Photogrammetric Engineering and Remote Sensing, Vol. 61, pp. 993-998.
Holben, B. N., Tucker, C. J., Fan, C. J., 1980. Spectral assessment of soybean leaf area and leaf biomass. Photogrammetric Engineering and Remote Sensing, Vol. 46 (5), 651–656.
Indonesia’s Center of Agricultural Data and Information System, 2013. Food consumption bulletin, Vol.4 No.2. Jakarta, Indonesia. (In Indonesian)
IRRI, 1993. 1993–1995 IRRI Rice Almanac. International Rice Research Institute, Manila.
Ismunadji, M., Partohardjono, S., Syam, M., and Widjono, A., 1988. Rice. Agricultural Research and Development Agency, Bogor. (In Indonesian)
Joachims, T., 1998. Text categorization with support vector machines: Learning with many relevant features. In European Conference on Machine Learning (ECML).
Justice, C. O., and Townshend, J. R. G., 2002. Special issue on the moderate resolution imaging spectroradiometer (MODIS): a new generation of land surface monitoring. Remote Sensing of Environment, Vol. 83, pp.1-2.
Keuchela, J., Naumanna, S., Heilera, M., and Siegmund, A., 2003. Automatic land cover analysis for Tenerife by supervised classification using remotely sensed data. Remote Sensing of Environment, Vol. 86, pp. 530–541.
Khush, G. S., 2005. What it will take to feed 5 billion rice consumers in 2030. Plant Molecular Biology, Vol. 59, pp. 1-6.
Li, Z., & Kafatos, M., 2000. Interannual variability of vegetation in the United States and its relation to El Nino/Southern Oscillation. Remote Sensing of Environment, Vol. 71 (3), pp. 239 – 247.
Lillesand, T. M., and Kiefer, R. W., 2000. Remote sensing and image interpretation. Wiley & Son, New York.
Lillesand, T. M., Kiefer, R. W., and Chipman, J., 2007. Remote sensing and image interpretation, 6th ed. John Wiley and Sons, Inc., New York, USA.
Liu, W. T., Kogan, F., 2002. Monitoring Brazilian soybean production using NOAA/AVHRR based vegetation condition indices. International Journal of Remote Sensing, Vol. 23 (6), pp. 1161–1179.
Lobell, D.B., and G.P. Asner, 2004. Cropland distributions from temporal unmixing of MODIS data. Remote Sensing of Environment, Vol. 93 (3), pp. 412-422.
Maas, S. J., 1988. Using satellite data to improve model estimates of crop yield. Agronomy Journal, Vol. 80 (4), pp. 655–662.
Maas, S. J., 1993. Within-season calibration of modeled wheat growth using remote sensing and field sampling. Agronomy Journal, Vol. 85 (3), pp. 669–672.
Martinez, B. and Gilabert, M. A., 2009. Vegetation dynamics from NDVI time series analysis using the wavelet transform. Remote Sensing of Environment, Vol. 113, pp. 1823–1842.
Mohammadi, L., and Geer, S. van de, 2003. On threshold-based classification rules. Mathematical Institute, University of Leiden, Netherland.
Monteiro, J. E. B. A., Azevedo, L. C., Assad, E. D., and Sentelhas, P. C., 2013. Rice yield estimation based on weather conditions and on technological level of production systems in Brazil. Pesq. agropec. bras., Brasília, Vol. 48, No. 2, pp.123-131.
Moore, J., and Holden, N. M., 2003. Examining the development of a potato crop nutrient management trial using reflectance sensing. ASAE Annual International Meeting. Las Vegas, Nevada, USA.
Moran, M. S., Inoue, Y., and Barnes, E. M., 1997. Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sensing of Environment, Vol. 61, pp. 319-346.
Morton, D. C., Defries, R. S., Shimabukuro, Y. E., Anderson, L. O., Arai, E., Del Bon Espirito-Santo, F., Freitas, R., and Morisette, J., 2006. Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proceedings of the National Academy of Sciences USA 103:14637-14641.
Murai, S., 1996. GIS Workbook, from http://ksrs.or.kr/library/index.htm.
Nemani, R.R., Running, S.W., 1989. Testing a theoretical climate-soil leaf area hydrological equilibrium of forests using satellite data and ecosystem simulation. Agriculture and Forest Meteorology, Vol. 44, pp. 245–260.
Niel, T. G. V., and McVicar, T. R., 2001. Remote sensing of rice-based irrigated agriculture: a review. Rice CRC Technical Report.
Oraintara, S., Chen, Y. J., and Nguyen, T. Q., 2002. Integer Fast Fourier Transform. IEEE Transactions on Signal Processing. Vol. 50, No. 3, pp. 607-618.
Pinter, Jr. P. J., Hatfield, J. L., Schepers, J. S., Barnes, E. M., Moran, M. S., Daughtry, C. S. T., and Upchurch, D. R., 2003. Remote sensing for crop management. Photogrammetric Engineering & Remote Sensing. Vol. 69, No. 6, pp. 647-664.
Pipes, R., 1974. Russia under the Old Regime. Charles Scribner's Sons, New York, p.8.
Potgieter, A. B., Apan, A., Dunn, P., and Hammer, G., 2007. Estimating crop area using seasonal time series of enhanced vegetation index from MODIS satellite imagery. Australian Journal of Agricultural Research, Vol. 58, pp. 316-325.
Rasmussen, M. S., 1997. Operational yield forecast using AVHRR NDVI data: reduction of environmental and inter-annual variability. International Journal of Remote Sensing, Vol. 18, No. 5, pp. 1059–1077.
Reynolds, C. A., Yitayew, M., Slack, D. C., Hutchinson, C. F., Huete, A., Petersen, M. S., 2000. Estimating crop yields and production by integrating the FAO crop specific water balance model with real time satellite data and ground-based ancillary data. International Journal of Remote Sensing, Vol. 21, pp. 3487–3508.
Robertson, A. N., Gitelson, A., Peng, Y., Shea, E. W., Leavitt, B., and Arkebauer, T., 2013. Continuous monitoring of crop reflectance, vegetation fraction, and identification of developmental stages using a four band radiometer. Agronomy Journal, Vol. 105, Issue 6.
Rouse, J. W., Haas, R. H., Schell, J. A., and Deering, D. W., 1973. Monitoring vegetation systems in the Great Plains with ERTS. Third ERTS Symposium, NASA SP-351 I, 309-317.
Sakamoto, T., Yokozawa, M., Toritani, H., Shibayama, M., Ishitsuka, N., and Ohno, H., 2005. A crop phenology detection method using time-series MODIS data. Remote Sensing of Environment, Vol. 96, pp. 366-374.
Sakamoto, T., Nguyen, N. V., Ohno, H., Ishitsuka, N., and Yokozawa, M., 2006. Spatiotemporal distribution of rice phenology and cropping systems in the Mekong Delta with special reference to the seasonal water flow of the Mekong and Basaac rivers. Remote Sensing of Environment, Vol. 100, pp. 1-16.
Samad, M., Merrey, D., Vermillion, D., Fuchscarsch, M., Mohtadullah, K., & Lenton, R., 1992, Irrigation management strategies for improving the performance of irrigated agriculture. Outlook on Agriculture, Vol. 21, pp. 279– 286.
Shresthan, R. P., and Naikaset, S., 2003. Agro-spectral models for estimating dry season rice yield in the Bangkok Plain of Thailand. Asian Journal of Geoinformatics, Vol. 4, pp. 11–19.
Son, N. T., Chen, C. F., Chen, C. R., Chang, L. Y., Duc, H. N., and Nguyen, L. D., 2013. Prediction of rice crop yield using MODIS EVI-LAI data in the Mekong Delta, Vietnam. International Journal of Remote Sensing, Vol. 34, No. 20, pp. 7275-7292.
Sudharsan, D., Adinarayana, J., Reddy, D. R., Sreenivas, G., Ninomiya, S., Hirafuji, M., Kiura, T., Tanaka, K., Desai, U. B., and Merchant, S. N., 2012. Evaluation of weather-based rice yield models in India. International Journal of Biometeorology.
Tingting, L., and Chuang, L., 2010. Study on extraction of crop information using time-series MODIS data in the Chao Phraya Basin of Thailand. Advances in Space Research, Vol. 45, pp. 775–784.
Tucker, C. J., Elgin, J. H. Jr., and McMurtrey J. E. III, 1979. Temporal spectral measurements of corn and soybean crops, Photogrammetric Engineering & Remote Sensing, Vol. 45, No. 5, pp. 643–653.
Vapnik, V. N., 1995. The nature of statistical learning theory. Springer-Verlag, New York.
Wardlow, B. D., Kastens, J. H., and Egbert, S. L., 2006. Using USDA crop progress data for the evaluation of green-up onset date calculated from MODIS 250-meter data. Photogrammetric Engineering and Remote Sensing, Vol. 72, pp. 1225-1234.
Wardlow, B. D., and Egbert, S. L., 2008. Large-area crop mapping using time-series MODIS 250 m NDVI data: an assessment for the U.S. Central Great Plains. Remote Sensing of Environment, Vol. 112, pp. 1096-1116.
Wiegand, C. L., Rechardson, A. J., Escobar, D. E., Gerbermann, A. H., 1990. Vegetation indices in crop assessment. Remote Sensing of Environment, Vol. 35, pp. 105–119.
Xiao, X., Boles, S., Frolking, S., Li, C., Babu, J Y., Salas, W., and Moore III, B., 2006. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sensing of Environment, Vol. 100, pp. 95-113.
Yeh, A. G. O., and Li, X., 1999. Economic development and agricultural land loss in the Pearl River delta, China. Habitat International, Vol. 23, pp. 373-390.
Zha, Y., Gao, J., and Ni, S., 2003. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, Vol. 24, No. 3, pp. 583−594.
Zhang, X., Schaaf, C. B., Strahler, A. H., Friedl, M. A., Hodges, J. C. F., Gao, F., Reed, B. C., and Huete, A., 2003. Monitoring vegetation phenology using MODIS. Remote Sensing of Environment, Vol. 84, pp. 471-475.