跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張靖協
Jing-Xian Chang
論文名稱: 雲微物理參數化法應用於颱風模式中之研究
指導教授: 黃清勇
Ching-Yuang Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 大氣物理研究所
Graduate Institute of Atmospheric Physics
畢業學年度: 89
語文別: 中文
論文頁數: 99
中文關鍵詞: 微物理參數化法颱風模式
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用整體雲微物理參數化法的雲模式應用於中尺度數值模式中模擬颱風渦旋的發展、結構以及包含雲水、雲冰、雨水、雪及軟雹/冰雹等5種水物之雲微物理現象,並深入分析探討包含冰相的微物理過程對颱風渦旋發展的影響。
    在2-D氣流過山的模擬實驗結果顯示,地形高度為4 km、均勻氣流為20 m s-1的初始環境下,加入冰相的微物理機制(BM)後所發展的冰相分佈相當合理。若在飽和調整(Tao et al., 1989)後將過飽和水汽強迫移除(BMNS)
    ,則模擬風場會明顯較弱,水物的分佈大多會集中在山前,而非山後。
    在3-D實驗中,加入冰相的微物理參數化法(BT)後渦旋的地面最低氣壓與近地面(z=50 m)最大風速有合理的配置,地面最低氣壓最小值(959.3 hPa)出現在積分第36小時,近地面最大風速最大值(59 m s-1)則出現在第12小時。此外,地面最低氣壓中心偏向東北方,眼牆的結構明顯但出現非軸對稱的情形,中心西南方約100 km處有一對流旺盛的輻合區,並隨著氣旋式往內輻合的氣流慢慢的往眼牆旋入並影響渦旋的強度;在旋入的期間,渦旋的地面最低氣壓與水平風速均減弱,垂直速度則增強,之後,氣壓與風速增強,而垂直速度則開始減弱。模擬的混合比相當豐富,高層的砧狀雲及眼牆的對流雲結構明顯,亦有非軸對稱的情形出現。而從BTAM的模擬結果也可以發現初始環境的濕度場分佈對模擬渦旋的發展有很大的影響。


    摘要 致謝 目錄 圖表說明 第一章前言 第二章模式簡介 §2.1 基本控制方程式 §2.2 雲微物理參數化法 第三章模擬結果 §3.1 實驗設計 §3.2 2-D實驗之模擬結果分析 §3.3 3-D實驗之模擬結果分析 §3.3.1 氣壓與風速之時序變化 §3.3.2 模擬渦旋之基本結構 §3.3.2 垂直速度隨時間之變化 第四章結論與展望 附錄 冰水飽和調整技術 參考文獻 附表 附圖

    1.王寶貫,1997:雲物理學。渤海堂出版社,共382頁。
    2.郭廷新,曾忠一,1994:半隱式半拉格朗日法在雲模式中的應用。大氣科學,第10期,第三號,387-415。
    3.許依萍,1998:台灣地形對颱風環流變化之影響。國立中央大學,大氣物理研究所,碩士論文,共121頁。
    4.黃毅堅,1999:北向侵台颱風的數值研究。國立中央大學,大氣物理研究所,碩士論文,共160頁。
    5.Businger. J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181-189.
    6.Charney, J. G.,and A. Eliassen, 1964: On the growth of the hurricane depression. J. Atmos. Sci., 21, 68-75.
    7.Clark, T. L., 1979: Numerical simulations with a three-dimensional cloud model: Lateral boundary condition experiments and multi-cellular severe storm simula- tions. J. Atmos. Sci., 36, 1070-1096.
    8.Cotton, W. R., and G. J. Tripoli, 1978: Cumulus convection in shearflow: Three- dimensional numerical experiments. J. Atmos. Sci., 35, 1503- 1521.
    9.Duynkerke. P. G., and A. G. M. Driedonks, 1987: A model for the turbulent structure of the stratocumulus-topped atmospheric boundary layer. J. Atmos. Sci., 44, 43-64.
    10.————, 1988: Application of the E-ε turbulence closure model to the neutral and stable atmospheric boundary layer. J. Atmos. Sci., 45, 865- 880.
    11.Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585-604.
    12.Houze, R. A., 1993: Cloud Dynamics. Academic Press, 573 pp.
    13.Huang, C. Y., and S. Raman, 1989: Application of the E-ε closure model to simulation of mesoscale topographic effects. Boundary Layer Meteor. 49, 169-195.
    14.————, 1993: Study of three dimensional anelastic non-hydrostatic model(in Chinese). Research Report, National Science Council, Taiwan.
    15.————, 1994: Semi-Lagrangian advection schemes and Eulerian WKL algorithms. Mon. Wea. Rev. 122, 1647-1658.
    16.————, and Y. L. Lin, 1997: The evolution of mesoscale vortex impinging on symme- tric topography. Proc. Natl. Sci. Counc., 21, 285-309.
    17.Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional con- vective storm dynamics. J. Atmos. Sci., 35, 1070- 1096.
    18.Kuo, H.-L., 1965: On formation and intensification of tropical cyclones through latent heat release by cumulus convection. J. Atmos. Sci., 22, 40-63.
    19.————, 1974: Further studies of the parameterization of the influence of cumulus con- vection on large-scale flow. J. Atmos. Sci., 31, 1232-1240.
    20.Leary, C. A., and R. A. Houze, 1979: Melting and evaporation of hydrometeors in precipitation from the anvil clouds of deep tropical con- vection. J. Atmos. Sci., 36, 669-679.
    21.Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065-1092.
    22.————, J. Han, and D. W. Hamilton, 1999: Orographic influence on an drifting cyclone. J. Atmos. Sci., 56, 534-562.
    23.Liu, Yubao, D.-L. Zhang, and M. K. Yau, 1997: A multiscale numerical study of hurricane Andrew(1992). Part I: Explicit simulation and verification. Mon. Wea. Rev., 125, 3073-3093.
    24.————, ————, and ————, 1999: A multiscale numerical study of hurricane Andrew(1992). Part II: Kinematics and inner-core structures. Mon. Wea. Rev., 127, 2597-2616.
    25.Lord, S. J., H. E. Willoughby, and J. M. Piotrowicz, 1984: Role of a parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone mo- del. J. Atmos. Sci., 41, 2836- 2848.
    26.Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problem. Rev. Geophys. Space Phys., 20, 851-875.
    27.Ogura, Y., 1963: A review of numerical modeling research on small-scale convection in the atmosphere. Meteor. Monogr., 5, 65-76.
    28.Orlanski. I., 1976: A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys., 21, 251-269.
    29.Ooyama, K., 1964: A dynamical model for the study of tropical cyclone development. Geofys. Int., 4, 187-198.
    30.Rotunno, R., and K. A. Emanuel, 1987: An air-sea interaction theory for tropical cyclones. Part II: Evolution study using a nonhydrostatic axisymmetric numeri- cal model. J. Atmos. Sci., 44, 542-561.
    31.Schlesinger, R. E., 1980: A three-dimensional numerical model of an isolated thunder-storm. Part II: Dynamics of updraft splitting and mesovortex couplet evolution. J. Atmos. Sci., 37, 395-420.
    32.Soong, S.-T., and Y. Ogura, 1973: A comparison between axisymmetric and slab- symmetric cumulus cloud models. J. Atmos. Sci., 30, 879- 893.
    33.Tao, W.-K., and J. Simpson, 1993: Goddard cumulus ensemble model. Part I: Model description. Terr. Atmos. Oceanic Sci., 41, 35-72.
    34.————, ————, and M. Mccumber, 1989: An ice-water saturation adjustment. Mon. Wea. Rev., 11, 231-235.
    35.————, and S.-T. Soong, 1986: The study of the response of deep tropical clouds to mesoscale processes: Three-dimensional numerical experiments. J. Atmos. Sci., 43, 2653-2676.
    36.Tripoli, G. J., 1992: An explicit three-dimensional nonhydrostatic numerical simula- tion of a tropical cyclone. Meteor. Atmos. Phys., 49, 229-254.
    37.Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 390, 395-411..
    38.————, H.-L. Jin, S. J. Lord, and J. M. Piotrowicz, 1984: Hurricane structure and evolu- tion as simulated by an axisymmetric, nonhydrostatic numerical model. J. Atmos. Sci., 41, 1169-1186.
    39.Zhang, D.-L., 1989: The effect of parameterized ice microphysics on the simulation of vortex circulation with a mesoscale hydrostatic model. Tellus, 41A, 132-147.
    40.————, E.-Y. Hsie, and M. W. Moncrieff, 1988: A comparison of explicit and implicit predictions of convective and stratiform precipitating weather systems with a meso-β scale numerical model. Quart. J. Roy. Meteor. Soc., 114, 31-60.

    QR CODE
    :::