| 研究生: |
蘇珈正 Jia-Zheng Su |
|---|---|
| 論文名稱: |
微型孔洞聲學超穎材料與吸音口罩應用 Microperforated acoustic metamaterials as the sound-absorbing mask |
| 指導教授: |
李雄
Shyong Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 妥瑞症聲語型 、微型孔洞 、聲學超穎材料 、吸音口罩 |
| 外文關鍵詞: | Tourette syndrome, microperforated, acoustic metamaterial, sound-absorbing mask |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
妥瑞症( Tourette syndrome )是一種發生於兒童之腦部基底核的慢性神經生理疾病,症狀反反覆覆、好好壞壞,是源於大腦基底核多巴胺的高反應性,是一種慢性且反覆不斷出現不自主的動作及聲語上的「tic」, 一個接一個,由簡單動作開始而逐漸複雜。Tic 最常見: 快速而短暫的眨眼睛、嘴巴、扮鬼臉、聳肩膀以及搖頭晃腦等動作。
本論文中主要強調口罩的吸音三要素:微型孔洞、厚度及吸音棉,利用不同的排列組合,量測吸音口罩能否能達到預設的吸音效果,並發現可達預期之吸音效果。
本論文第一部分為多孔聲學超穎材料(acoustic metamaterials)應用於第一版吸音口罩,第二部分為微型孔洞聲學超穎吸音材料(Micro-perforated acoustic metamaterials)應用於第二版吸音口罩。吸音口罩第一、二版皆跟亨龍公司及壢新醫院合作設計製造,第一版口罩跟第二版口罩搭配不同性質,如口罩材質、厚度,有無不織布,矽膠條等,而其中最特別的是不同聲學超穎材料應用於吸音口罩。利用聲學超穎吸音材料得到一個有效的聲音抑制能力。第一、二版吸音口罩的聲音抑制表現都優於無口罩及一般醫療用口罩,而最後的目標是成功完成設計和發展一個低耗費、輕量化,跟聲學超穎材料結構用於妥瑞症患者上。
Tourette syndrome is a chronic neurophysiological disease that occurs in the basal nucleus of a child's brain. It is a chronic, repetitive and involuntary movement and tic "tic," one by one, starting with simple movements and becoming more complex. . Tic is the most common: fast and transient blinking, grimacing, and shrugging. This article mainly emphasizes the three elements of the sound-absorbing mask: microperforated, thickness and sound-absorbing cotton. Using different arrangements and combinations, it can measure whether sound-absorbing masks can achieve the preset sound-absorbing effect and find the expected sound-absorbing effect. The first part of this thesis is that the porous acoustic metamaterials are used in the first edition of sound-absorbing masks, and the second part is the microperforated acoustical super-absorption materials used in the second edition of sound-absorbing masks. Acoustic translucent sound-absorbing materials provide an effective sound suppression capability. The sound-absorbing masks were designed and manufactured in cooperation with Hanlong industrial and chungli new hospital. The final goal is to successfully complete the design and development of a low-cost, lightweight, acoustic hyperspectral material structure for patients with Tourette's syndrome.
[1]ISO 354:2003. Acoustics - measurement of sound absorption in a reverberation room.
[2]ASTM C384 -04. Standard Test Method for Impedance and Absorption of Acoustical Materials by Impedance Tube Method.
[3]Scahill L.; Specht M.; Page C.; The prevalence of tic disorders and clinical characteristics in children. J Obsessive Compuls Relat Disord. 2014, 3, 394–400.
[4]Scott B.L.; Jankovic J.; Donavon D.T.; Botulinium toxin injection into vocal cord in the treatment of malignant coprolalia associated with Tourette’s syndrome. Mov Disord. 1996, 11, 431–433.
[5]Nakai Y.; Masutani H.; Laryngol A.O.; Noise-induced Vasoconstriction in the Cochlea. Acta Otolaryngol. 1998, 447, 23-27.
[6]Thiery L.; Meyer B. C.; Hearing loss due to partly impulsive industrial noise exposure at levels between 87 and 90 dB(A). The Journal of the Acoustical Society of America. 1998, 84, 651.
[7]Magrab E.B.; Environmental Noise Control. Wiley & Sons Ltd., Washington. 1975, 312-313.
[8]Yang Z.; Mei J.; Yang M.; Chan N. H.; Sheng P.; Membrane-Type Acoustic Metamaterial with Negative Dynamic Mass. Phys. Rev. Lett. 2008, 101, 204301.
[9]Lee S.H.; Park C.M.; Seo Y.M.; Wang Z.G.; Kim C.K.; Acoustic metamaterial with negative density. Phys. Lett. A. 2009, 373, 4464-4469.
[10]Yang Z.; Dai H.M.; Chan N.H.; Ma G.C.; Sheng P.; Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime. Appl. Phys. Lett. 2010, 96, 041906.
[11]Naify C.J.; Chang C.M.; McKnight G.; Nutt S.; Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials. J. Appl. Phys. 2010, 108, 114905.
[12]Naify C.J.; Chang C.M.; McKnight G.; Scheulen F.; Nutt S.; Membrane-type metamaterials: Transmission loss of multi-celled arrays. J. Appl. Phys. 2011,109, 104902.
[13]Mei J.; Ma G.; Yang M.; Yang Z.; Wen W.; Sheng P.; Acoustic metasurface with hybrid resonances. Nat. Commun. 2012, 3, 756.
[14]Starkey T.A.; Smith J.D.; Hibbins A.P.; Sambles J.R.; Rance H.J.; Thin structured rigid body for acoustic absorption. Applied Physics Letters. 2017,110,041902.
[15]Maa D.Y.; Potential of microperforated panel absorber. The Journal of the Acoustical Society of America. 1998, 104, 2861.
[16]Maa D.Y.; Theory and design of microperforated-panel sound-absorbing construction. Sci. Sin. 1975, 18, 55-71.
[17]Maa D.Y.; Wide band sound absorber based on microperforated panels. Chinese journal of acoustics. 1985, 4, 197-108.
[18]Maa D.Y.; Microperforated Panel wide-band absorber. Noise Control Eng. J. 1987, 20, 77-84.
[19]Maa D.Y.; Design of microperforated panel construction. Acta Acust. 1988, 13, 174–180.
[20]Fuchs H.V.; Zha X.; Transparente Vorsatzschalen als alternative Schallabsorber im Plenarsaal des Bundestages. Bauphysik. 1994, 16, 69-80.
[21]Fuchs H.V.; Zha X.; Einsatz microperforierter Platten als Schallabsorber mit inharenter Dampfung. Acustica. 1995, 81, 107-116.
[22]Li T.T.; Chuang Y.C.; Huang C.H.; Lou C.W.; Lin J.H. Applying Vermiculite and Perlite Fillers to Sound-Absorbing/Thermal-Insulating Resilient PU Foam Composites. Fibers Polym. 2015, 16, 691-698.
[23]Rey R.D.; Alba J.; Arenas J.P.; Sanchis V.J.; An empirical modelling of porous sound absorbing materials made of recycled foam. Applied Acoustics. 2012, 73, 604-609.
[24]Eadkhong T.; Saleh A.; Danworaphong S.; SOUND ABSORPTION OF OIL PALM TRUNK. ICSV23, Athens (Greece). 2016. 10-14.
[25]Stadler E.M.; García M.J.E.; Measurement of the sound absorption coefficient for an advanced undergraduate physics laboratory. European Journal of Physics. 2017, 38, 055-069.
[26]Song G.Y.; Cheng Q.; Huang B.; Dong H.Y.; Cui T.J.; Broadband fractal acoustic metamaterials for low-frequency sound attenuation. Appl. Phys. Lett. 2016, 109, 131901.