跳到主要內容

簡易檢索 / 詳目顯示

研究生: 莊曜滕
Yao-Teng Chuang
論文名稱: 雜質在假晶型碳矽合金對張力之熱穩定性影響
Effect of impurities on thermal stability of pseudomorphically strained Si:C layer
指導教授: 溫偉源
Wei-Yen Woon
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 100
語文別: 英文
論文頁數: 52
中文關鍵詞: 碳矽合金張力之熱穩定性
外文關鍵詞: phosphorus doped, silicon carbon, strain stability
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們藉由高解析x光繞射儀(HRXRD)及傅立葉轉換紅外線光譜(FTIR)來研究假晶型的碳矽合金在矽基板上的張應力熱穩定性的問題。為了產生夠大的張應力來提升電晶體的載子遷移數度,因此利用了非平衡方式突破碳元素在矽基板中的平衡溶解度來產生夠大的張應力。我們發現無論在只有碳元素的摻雜(C樣品)或多摻雜磷元素(CP樣品),張應力隨著後段加熱時間的拉長或溫度提升而釋放所保有的張應力,但在氮氣流通加熱的環境下全部張力釋放所需的熱處理條件卻遠低於前人研究需高溫加熱並以β-SiC析出的形成釋放張應力的條件,且CP樣品的全部張力釋放更是遠低於此條件。為了瞭解磷在CP樣品中如何影響張應力的消失,我們以動態模擬的方式來模擬張應力在HRXRD中量測各樣品中的分布趨勢並和(FTIR)做比較且探討張應力釋放的運動方式。從FTIR中我們發現晶格位置上的碳含量(607cm-1)並沒有太大的改變,且過渡帶的碳矽化合物(750cm-1)及β-SiC(810cm-1)的特徵訊號皆無變化,說明了張應力的釋放並非以晶格位置上的碳被置換或β-SiC形成而造成的。另外,我們比較了張力釋放和矽基板的氧化程度並發現兩者有著相似的趨勢的。因為碳元素是有良好的吸引並限制間隙元素的能力且二氧化矽的形成所造成的晶格擴大會產生多餘的間隙矽元素,因此我們推測系統並非以置換晶格位置上的碳元素或β-SiC形成的方式使張應力消失的原因是因為張應力以較低耗能的體積補償方式釋放。雖然在CP樣品中依舊有著和矽基板氧化相似的趨勢,但是張應力卻在表面摻雜磷元素的區域迅速消失,因此我們視磷元素在系統中為另為一種間隙元素來加速張應力的釋放。


    We investigate the thermal stability of pseudomorphically strained Si:C layer after fully recrystallization using high resolution x-ray diffraction (HRXRD) and Fourier transform infrared (FTIR) spectroscopy. From HRXRD, the strain is relaxed with increasing post-annealing time or temperature as previous study, revealed almost complete strain relaxation in carbon incorporation (C sample). However, we found phosphorus doped Si:C (CP sample) far below the β-Si:C precipitation threshold under nitrogen flow ambient especially. The strain is well defined by HRXRD kinematic simulation in at least five layers concentration distribution and compared to FTIR spectroscopy analysis. Surprisingly, almost complete strain relaxation is found without significant substitutional carbon (Csub) loss (at 607 cm-1). The strain loss is strongly correlated to the Si-O bond (at 1100cm-1) formation and the P doped profile. The above observations indicate interstitial silicon injected by oxidation process and additional phosphorus atoms provide another strain relaxation pathway rather than previously thought mechanism of Csub kicked out from substitutional site and formed β-Si:C precipitation. The volume compensation by forming Csub interstitial complexes rather than Csub diffusing out from substitutional site during the thermal treatment is the most possibility mechanism, due to the fact that carbon is known to be strong gettering center. For CP sample, the interstitial phosphorus is proposed to be taken as additional interstitial source to promote the volume compensation. In summary, we find another pathway, namely the volume compensation, for strain relaxation in pseudomorphicallly strain Si:C alloy. The resultant process yields lower deactivation energy than the β-Si:C precipitation mechanism.

    Contents 1. Introduction 1 2. Background 4 2.1 Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) 5 2.1.1 Scaling down of MOSFET 8 2.1.2 Generation of strain in Si as band structure engineering 10 2.2 Stability of non-equilibrium solid phase epitaxial regrowth 15 2.2.1 Characteristic of carbon 15 2.2.2 Stability of Si:C/Si non-equilibrium recrystallized 17 3. Experimental setup and measurement 20 3.1 Sample preparation 20 3.2 Experimental setup 24 3.3 Measurement methods 27 3.3.1 High resolution X-ray diffraction (HRXRD) 27 3.3.2 Fourier transform infrared spectroscopy (FTIR) 32 4. Result and Discussion 34 4.1 Stability of strain during post-annealing treatment 34 4.2 Characteristic vibration from FTIR 40 4.3 The mechanism of strain relaxation 42 5. Conclusions 47 6. Reference 49

    [1] S. Ruffell, I. V. Mitchell, and P. J. Simpson, “Soild-phase epitaxial regrowth of amorphous layers in Si(100) created by low-energy, high-fluence phosphorus implantation”, J. Appl. Phys. 98, 083522 (2005)
    [2] P. Grudowski et al. “An Embedded Silicon-Carbon S/D Stressor CMOS Integration on SOI with Enhanced Carbon Incorporation by Laser Spike Annealing”, IEEE SOI Conf. Proc. P.17 (2007)
    [3] Zhibin Ren et al. “On Implementation of Embedded Phosphorus-doped SiC Stressors in SOI nMOSFETs”, Tech. Dig. - Int. Electron Devices Meet, P.172 (2008)
    [4] R. Duffy et al. “Boron uphill diffusion during ultrashallow junction formation”, Appl. Phys. Lett. 82, 3647 (2003)
    [5] Babak. Sadigh et al. “Large enhancement of boron solubility in silicon due to biaxial stress”, Appl. Phys. Lett. 80, 4738 (2002)
    [6] T. Ghani et al. “A 90nm High Volume Manufacturing Logic Technology Featureing Novel 45nm Gate Length Strained Silicon CMOS Transistors”, IEDM Tech. Dig. P.978 (2003)
    [7] E. R. Hsieh and Steve S. Chung, ”The procimity of the strain induced effect to improve the electron mobility in a silicon-carbon source-drain structure of n-channel metal-oxide-semiconductor field-effect transistors” Appl. Phys. Lett. 96, 093501 (2010)
    [8] Shao-Ming Koh, Ganesh S. Samudra, and Yee-Chia Yeo, “Carrier transport in straine N-channel field effect transistors with channel proximate silicon-carbon source/drain stressors”, Appl. Phys. Lett. 98, 03211 (2010)
    [9] M. H. Yu et al. “The strained-SiGe Relaxation Induced Underlying Si Defects Following te Millisecond Annealing for the 32nm PMOSFETs”, ECS, 159, P.H243 (2012)
    [10] S. P. Chappell, and R. C. Newman, “The selective trapping of self-interstitials by interstitial carbon impurities in enectron irradiated silicon”, Semicond. Sci. Technol. 2, P.691 (1987)
    [11] K. C. Ku et al. “Effect of germanium and carbon coimplants on phosphorus diffusion in silicon”, Appl. Phys. Lett. 89, 112104 (2006)
    [12] L. A. Edelman et al. “Effect of carbon codoping on boron diffusion in amorphous silicon” Appl. Phys. Lett. 93, 072107 (2008)
    [13] H. J. Osten et al. “Substitutional versus interstitial carbon incorporation durig pseudomorphic growth of Si1-yCy on Si(100)”, J. Appl. Phys. 80, 6711 (1996)
    [14] H. J. Osten et al. “Substitutional carbon incorporation in epitaxial Si1-yCy alloys on Si(100) grown by molecularbeam epitaxy”, Appl. Phys. Lett. 74, 836 (1999)
    [15] S. Y. Park et al. “Carbon incorporation pathways and lattice sites in Si1-yCy alloys grown on Si(100) by molecular-beam epitaxy”, J. Appl. Phys. 91, 5716 (2002)
    [16] T. O. Mitchell, J. L. Hoyt, and J. F. Gibbons, “Substitutional carbon incorporation in epitaxial Si1-yCy layers grown by chemical vapor deposition”, Appl. Phys. Lett. 71, 12 (1997)
    [17] N. Cherkashin et al. “On the influence of elastic strain on the accommodation of carbon atoms into sustitutional sites in strained Si:C layers grown on Si substrates” Appl. Phys. Lett. 94, 141910 (2009)
    [18] J. W. Strane et al. “Carbon incorporation into Si at high concentrations by ion implantation and solid phase epitaxy”, J. Appl. Phys. 79, 637 (1996)
    [19] S. D. Kim, C. M. Park, and J. C. S. Woo, “Advanced source/drain engineering for box-shaped ultrashallow junction formation using laser annealing and pre-amorphization implantation in sub—100-nm SOI CMOS ”, IEEE Trans. Electron Devices, 49, 1748 (2002)
    [20] Shao-Ming Koh et al. “Silicon-Carbon Formed Using Cluster-Carbon Implant and Laser-Induced Epitaxy for Application as Source/Drain Stressors in Strained n-Channel MOSFETs”, ECS, 156, P.H361 (2009)
    [21] T. Gebel et al. “Flash lamp annealing with millisecond pulses for ultra-shallow boron profiles in silicon”, Nucl. Instrum. Meth. B, 186, 287 (2002)
    [22] Michael J. Aziz, Paul C. Sabin, and Guo-Quan Lu, “The activation strain tensor: Nonhydrostatic stress effects on crystal-growth kinetics” Phys. Rev. B 44, 9812 (1991)
    [23] Yaocheng Liu et al. “Strained Channel MOSFETs with Embedded Silicon Carbon Formed by Soild Phase Epitaxy”, VLSI Symp. Tech. Dig, P.44-45 (2007) Implant
    [24] Kah-Wee Ang et al. “Performance Enhancement in Uniaxial Strained Silicon-on-Insulator N-MOSFETs Featuring Silicon-Carbon Source/Drain Regions”, IEEE, VOL.54, NO.11 (2007)
    [25] J. W. Strane et al. “Precipitation and relaxation in strained Si1-yCy/Si heterostructures”, J. Appl. Phys. 76, 3656 (1994)
    [26] C. Guedj et al. “Precipitation of β-SiC in Si1-yCy alloy”, J. Appl. Phys. communications, 84, 4631 (1998)
    [27] Yong Jeong KIM et al. “The Loss Kinetics of Substitutional Carbon in Si1-yCy Regrown by Solid Phase Epitaxy”, Jpn. J. Appl. Phys. 40, 773 (2001)
    [28] P. Wener et al. “Investigation of CxSi defects in C implanted silicon by transmission electron microscopy”, Appl. Phys. Lett. 70, 252 (1997)
    [29] A. R. Powell, F. K. LeGoues, and S. S. lyer, “Formation of β-SiC nanocrystals by the relaxation of Si1-yCy random alloy layers”, Appl. Phys. Lett. 94, 324 (1994)
    [30] H. J. Osten et al. “Strain relaxation in tensile-strained Si1-yCy layers on Si (001)”, Semicond. Sci. Technol. 11, 1678 (1996)
    [31] M. S. Goorsky et al. “Thermal stability of Si1-yCy /Si strained layer superlattices”, Appl. Phys. Lett. 60, 2758 (1992)
    [32] G. G. Fischer et al. “Investigation of the high temperature behavior of strained Si1-yCy/Si heterostructures”, J. Appl. Phys. 77, 1934 (1994)
    [33] W. J. Taylor, T. Y. Tan, and U. Gösele, “Carbon precipitation in silicon: Why is it so difficult?”, Appl. Phys. Lett. 62, 3336 (1993)
    [34] P. Boucaud et al. “Photoluminescence of strained Si1-yCy alloys grown at low temperature”, Appl. Phys. Lett. 66, 70 (1995)
    [35] Zhiyuan Ye et al. “A study of low energy phosphorus implantation and annealing in Si:C epitaxial films”, Semicond. Sci. Technol. 22, P.171 (2007)
    [36] B. Yang et al. “Strain loss in epitaxial Si:C films induced by phosphorus diffusion”, ECS trans. 16, P.1021 (2008)
    [37] The Stopping and Range of Ions in Matter (SRIM) simulation, http://www.srim.org/
    [38] W. E. Beadle, J. C. C. Tsai, and R. D. Plummer, QUICK REFERENCE MANUAL FOR SILICON INTEGRATED CIRCUIT TECHNOLOGY, Bell Telephone Laboratories (1985)
    [39] G. L. Olson and J. A. Roth, “KINETICS OF SOLID PHASE CRYSTALLIZATION IN AMORPHOUS SILICON”, Mater. Sci. Rep. 3, 1 (1988)
    [40] W. Y. Woon et al. “Strain-doping coupling dynamics in phosphorus doped Si:C formed by solid phase epitaxial regrowth”, Appl. Phys. Lett. 97, 141906 (2010)
    [41] R. C. Newman and J. B. Willis, “VIBRATIONAL ABSORPTION OF CARBON IN SILICON”, J. Phys. Chem. Solids 26, 373 (1965)
    [42] L. V. Kulik et al. “The effect of composition on the thermal stability of Si1-x-yGexCy/Si heterostructures”, Appl. Phys. Lett. 72, 1972 (1998)

    QR CODE
    :::