跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張智勇
Chih-Yung Chang
論文名稱: 軟弱沉積岩層滲透異向性之探討
Anisotropic Permeability of the Sedimentary Soft Rock
指導教授: 董家鈞
J. J. Dong
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 應用地質研究所
Graduate Institute of Applied Geology
畢業學年度: 92
語文別: 中文
論文頁數: 124
中文關鍵詞: 軟弱岩石滲透異向性中空試體扭剪試驗滲透係數
外文關鍵詞: hollow cylinder, torsional shear, anisotropic permeability, soft rock
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣西部麓山帶西緣地區廣泛分佈著年輕且膠結不良的沉積岩層,此等軟弱岩層具有強度低、變形性高及遇水極易軟化之特性。影響軟弱岩層破壞之外在環境因素中,水文地質特性為重要關鍵因素之一。因軟弱岩層之強度受到有效應力控制,有效應力受到岩層中孔隙水壓分佈控制,而孔隙水壓分佈又受到岩層之滲透性控制,加上滲透性又為岩層所受應力狀態之函數,故軟弱岩層之破壞,應與其滲透特性的變化極為相關。本研究利用傳統三軸實心試體之透水試驗與中空扭剪滲透試驗儀,配合軟弱岩石材料的中空套鑽技術,進行一系列軟弱岩石滲透性的相關試驗。主要探討項目包括:(1)軟岩滲透異向性;(2)圍壓對軟岩滲透異向性之影響;以及(3)受剪過程軟岩滲透性質的變化。研究結果發現:(1)軟岩存在滲透異向性,尤其是砂岩夾薄層泥岩或砂泥、頁岩薄互層之軟岩材料,其水平與垂直層面之滲透係數比(kh/kv)約為10~100;(2)垂直與水平層面的滲透係數均隨有效圍壓的增加有逐漸降低的現象,而滲透異向性程度則隨圍壓之增加而變大;(3)在受剪過程中,試體的滲透係數隨剪應變量增加有變大的趨勢,特別在應力-應變曲線過尖峰強度後,滲透係數值將明顯上升。本研究的試驗結果顯示,軟岩材料除具有先天滲透異向性以外,同時滲透異向性亦將隨應力狀態改變而改變,因此,軟岩工程之分析與設計宜考慮此一效應之影響。


    Anisotropic Permeability of the Sedimentary Soft Rock
    Chih-Yung Chang
    ABSTRACT
    In the west foothill of Taiwan generally distributes young, poorly cemented, sedimentary soft rock.. This material is weak in strength and is easily deformed. The properties will be more obvious while it is watered. The characteristic of hydraulic geology affects the strength of soft rock. The permeability is an important factor in hydraulic geology. It is a function of confining stress, controls pore water distribution, and influences soft rock strength. This research studies the permeability of soft rock. A hollow cylindrical torsional shear device was developed and a series of permeability tests were performed in this device as well as triaxial cell. The skill of coring hollow cylindrical specimen are also discussed. This study includes : (1) the anisotropic permeability of soft rock; (2)the effect of confining pressure upon permeability; (3)the change of permeability during shearing. Results show that there exists anisotropic permeability in soft rock, especially for sandstone stratified mudstone and/or shale. The ratio of horizontal permeability coefficient (flow direction is parallel to the strata, kh) to vertical permeability coefficient (flow direction is perpendicular to the strata, kv) is 10 to 100. The kh and kv decreased, while confining pressure increased. The anisotropic of permeability is increasing with confining pressure. The coefficient of permeability is increasing with shear strain and a obviously raise occurs in the post peak stage of stress strain curve.

    頁碼 中文摘要 ...................................................................Ⅰ 誌謝 .......................................................................Ⅱ 目錄 .......................................................................Ⅲ 圖目錄 .....................................................................Ⅵ 表目錄 .....................................................................Ⅸ 第一章 前言 ................................................................1 1.1 研究動機與目的 .................................................1 1.2 研究方法 .......................................................2 1.3 論文內容 .......................................................4 第二章 文獻回顧 ............................................................5 2.1 軟弱岩石之定義...................................................5 2.2 軟弱岩石之種類、成因及其特性 ...................................8 2.3 軟弱岩石的滲透性質 ............................................14 2.4 中空扭剪試驗 ..................................................18 2.4.1 中空扭剪試驗相關研究 ....................................18 2.4.2 中空圓柱試體尺寸與應力分佈 ..............................19 第三章 試驗儀器介紹與試驗規劃 .............................................26 3.1 試驗儀器介紹 ..................................................26 3.1.1 滲透性量測系統 .........................................26 3.1.2 中空扭剪滲透試驗系統 ...................................33 3.2 試體來源 ......................................................41 3.3 中空試體套鑽 ..................................................43 3.4 試驗規劃 ......................................................48 3.4.1 室內透水試驗 ...........................................49 3.4.2 中空扭剪滲透試驗 .......................................50 3.5 試驗方法 ......................................................53 3.5.1 定流量透水試驗 .........................................53 3.5.2 中空扭剪滲透試驗 .......................................57 3.5.3 物性試驗 ...............................................63 第四章 試驗結果與討論 .....................................................64 4.1 儀器測試結果 ..................................................64 4.2 基本物性 ......................................................70 4.3 軟弱岩石之滲透係數異向性 ......................................74 4.4 應力狀態對滲透係數之影響 ......................................76 4.5 中空扭剪滲透試驗結果 ..........................................80 第五章 結論與建議 .........................................................84 5.1 結論 ..........................................................84 5.2 建議 ..........................................................85 參考文獻 ...................................................................87 附錄A 滲透異向性之定流量透水試驗結果 ......................................93 附錄B 應力狀態下之定流量透水試驗結果 ......................................99 附錄C 中空扭剪滲透試驗結果 ...............................................110 附錄D 試驗試體照片 .......................................................114 英文摘要 ..................................................................124

    1.李怡德(1996), “軟弱砂岩弱化行為研究“, 國立台灣大學土木工程研究所碩士論文。
    2.李賢淦(2000), “軟砂岩徵觀組構與異向性滲透性質探討”, 國立交通大學土木工程研究所碩士論文。
    3.李程遠(2003), “多功能剪力試驗系統之研發-扭剪部分”, 國立交通大學土木工程研究所碩士論文。
    4.林銘郎、林煜卿(1998), “新竹寶山地區泥質岩石力學性質研究’, 岩盤工程研討會, 新竹, 國立交通大學, pp.139-148.
    5.林宏明(2000), “軟岩在不同環境及應力條件下之力學行為”, 國立成功大學土木工程研究所博士論文。
    6.洪任賢(2001), “軟弱岩石之應力應變行為”, 國立交通大學土木工程研究所碩士論文。
    7.卿建業(1995), “人工軟弱岩石承載行為研究“, 國立台灣大學土木工程研究所碩士論文。
    8.陳賀瑞(1997), “中北部地區籍軟弱砂岩之物理與力學性質之初步探討”, 國立交通大學土木工程研究所碩士論文。
    9.陳恆祐(1999), “軟岩的滲透性質及滲流對微組構之影響”, 國立交通大學土木工程研究所碩士論文。
    10.黃燦輝(1994), “隧道工程相關之軟弱岩石性研究(1)”, 行政院國家科學委員會,專題研究計劃成果報告,編號NSC84-2211-E-008-039, pp.17-21.
    11.黃惠儀(1998), “軟弱岩石之三軸試驗”, 國立交通大學土木工程研究所碩士論文。
    12.國立交通大學(2002), “寶山第二水庫蓄水後邊坡穩定性研究成果報告”, 經濟部水利署中區水資源局。
    13.曾孝欽(2003), “多功能剪力試驗系統之研發-單、直剪部分”, 國立交通大學土木工程研究所碩士論文。
    14.曾建豪、董家鈞、林銘郎(2003), “傾斜成層軟岩邊坡異向性滲透特性對孔隙水壓分佈影響”, 大地工程研討會,台北
    15.Brace, W. F., Walsh, J. B., and Frangos, W. T.(1978), “Permeability of Granite Under High Pressure”, J. Geophys. Res. Vol.73, No.6, pp.2225-2236.
    16.Bieniawski, Z.T.(1984), “Rock Mechanics Design in Mining and Tunneling”, Baliema, Boston, pp.272.
    17.Barton, M. E.(1993), “Cohesive sands: The Natural Transition form Sands to Sandstones ”, Geotechnical Engineering of Hard Soil-Soft Rocks, ed. Anagnostopoulos et al., Balkema, Rotterdam, pp.367-374.
    18.Cooling, L. F. and Smith, D. B.(1936), Journal of the Institution of Civil Engineers, Vol.3, pp.333-343.(間接引用)
    19.Dobereiner, L. and DE Freitas, M. H.(1986), “Permeability Testing in The Triaxial Cell”, Geotechquine, Vol.36, No.1, pp.79-94.
    20.Geuze, E. C. W. A. and Tan, T. T.(1953), in Proceedings, Second International Congress on Rheology, V. G. W. Harrison, Ed., Oxford(間接引用)
    21.Hoskins, E. R.(1969), “The Failure of Thick-Walled Hollow Cylinders of Isotropic Rock”, International Journal of Rock Mechanics and Mining Sciences., Vol.6, pp.99-125.(間接引用)
    22.Hight, D.W., Gens, A. and Symes, M. J.(1983), “The Development of a New Hollow Cylinder Apparatus for Investigating the Effects of Principal Stress Rotation in Soils”, Geotechnique, Vol.33, No.4, pp.335-383.
    23.ISSMFE(1985), Technical Committee Report on Undisturbed and Laboratory Testing of Soft Rocks and Indurated Soils: International Society for Soil Mechanics and Foundation Engineering.
    24.ISRM, Basic Geotechnical Description of Rock Mass, ISRM Commission on Classification of Rock and Rock Masses, M. Rocha, Coordinator, International Journal of Rock Mechanicsand Mining Sciences and Geomechanics Abstracts, Vol.18, No.1, pp. 85–110, 1981.
    25.Johnston, I.W.(1993), “Soft Rock Engineering”, Comprehensive Rock Engineering: principles, practice & projects, Vol.1, pp.367-393.
    26.Li, Shiping, Li, Yushou et al.(1994), “Permeability-Strain Equations Corresponding to the Complete Stress-Strain Path of Yinzhuang Sandstone ”, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol.31, No.4, pp.383-391.
    27.Lee, D.H. et al.(1999), “Stress Paths and Mechanical Behavior of a Sandstone in Hollow Cylinder Tests”, In. J. Rock Mechanics & Mining Sciences, Vol.36, pp.857-870.
    28.Lee, D.-H., Juang, C. H. and Lin, H.-M.(2002), “Technical Note : Yield Surface of Mu-San Sandstone by Hollow Cylinder Tests”, Rock Mechanics and Rock Engineering, Vol.35, No.3, pp.205-216.
    29.Olsen, H. W., Nichols, R. W. and Rice, T. L.(1985), “Low Gradient Permeability Measurements in a Triaxial System”, Geotechnique, Vol.35, No.2, pp.145-157.
    30.Olsen, H. W., Morin, R.H. and Nichols, R.W.(1988), “Flow Pump Applications in Triaxial Testing”, Advanced Triaxial Testing of Soil and Rock, ASTM STP 977, Rober T. D., Ronald, C. C. and Marshall, L.S., Eds., American Society for Testing and Materials, Philadelphia, pp.68-81.
    31.Oliveira, R.(1993), “Weak Rock Materials”, The Engineering Geology of Weak Rock, Cripps et al.(eds.), Balkma, Rotterdam, pp.5-15.
    32.Saada, A. S. and Baah, A. K.(1967), in Proceedings, Third Pan-American Conference on Soil Mechanics and foundations Engineering, Caracas, Vol.1, pp.351-359.(間接引用)
    33.Sowers, G. F.(1981), “Rock Permeability or Hydraulic Conductivity-An Overview”, Permeability and Groundwater Transport, ASTM STP 746, T. F. Zimmin and C. O. Riggs, Eds., American Society for Testing and Materials, 1981, pp.65-83.
    34.Saada, A. S. and Townsend, F. C.(1981), “State of the Art: Laboratory Strength Testing of Soils”, Laboratory Shear Strength of Soil, ASTM, STP 740, R. N. Yong and F. C. Townsend, Edits, American Society for Testing and Materials, pp.7-77.
    35.Symes, M. J. P. R., Gens, A. and Hight, D.W.(1984), “Undrained Anisotropy and Principal Stress Rotation in Saturated Sand”, Geotechnique, Vol.34, No.1, pp.11-27.
    36.Saada, A.S.(1988), “Hollow Cylinder Torsional Devices:Their Advantages and Limitations”Advanced Triaxial Testing of Soil and Rock, ASTM STP977, Robert T. Donaghe, Ronald C.Chaney, and Marshall L. Silver, Eds., American Society for Testing and Materials, Philadelphia, 1988, pp.766-795
    37.Santarelli, F. J. and Brown, E. T.(1989), “Failure of Three Sedimentary Rovks in Triaxial and Hollow Cylinder Compression Tests”, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. Vol.26, No.5, pp.401-413.
    38.Senseny, P. E., Mellegard, K. D. and Wagner, L. A.(1989), “Hollow Cylinder Tests on Natural Rock Salt”, Geotechnical Testing Journal, GTJODJ, Vol.12, No.2, pp.157-162.
    39.Taylor, G. I. and Quinney, H.(1931), “Philosophical Transactions”, Royal Society, London, A230, pp.323-363.(間接引用)
    40.Tatsuoka, F., Sonoda, S., Hara, K., Fukushima, S. and Padhan, Y. B. S.(1986), “Failure and Deformation of Sand in Torsional Shear”, Soils and Foundations, Vol.26, No.4, pp.79-97.
    41.Teufel, L. W.(1987), “Permeability Changes during Shear Deformation of Fractured Rock”, Proc. of the 28th U.S. Rock Mechanics Symposium, pp.473-480.
    42.Wang J.-A.and Park, H. D.(2002), “Fluid Permeability of Sedimentary Rocks in a Complete Stress-Strain Process”, Engineering Geology, Vol.63, pp.291-300.

    QR CODE
    :::