| 研究生: |
呂建穎 Chien-Ying Lu |
|---|---|
| 論文名稱: |
利用光達衛星CALIPSO研究高空卷雲分佈 Study of High Altitude Cirrus Clouds based on CALIPSO Data |
| 指導教授: |
倪簡白
JB Nee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 生物物理研究所 Graduate Institute of Biophysics |
| 論文出版年: | 2013 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 卷雲 、光達 、CALIPSO衛星 |
| 外文關鍵詞: | Cirrus, Lidar, CALIPSO |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
卷雲是出現在高對流層的冰雲,由於分佈範圍很廣,所以在全球
的天氣系統和輻射平衡上扮演了重要的角色。Cloud‐Aerosol Lidar
and Infrared Pathfinder Satellite Observation(CALIPSO) 衛星的發射提
供了我們一個從太空用光達觀測地球大氣垂直結構的方式,對於了解
全球的卷雲分佈上有很大的幫助。本研究利用CALIPSO 提供的2008
年12 月到2012 年2 月雲層資料進行統計分析,結果顯示卷雲發生機
率在赤道地區最高,並且被卷雲覆蓋的範圍有季節性的變化,6-8 月
的分佈偏向北半球、12-2 月偏向南半球,在北半球的夏季卷雲主要集
中於亞洲夏季季風區。分析台灣地區(北緯20 度至30 度,東經115
度至125 度)的卷雲發生機率與利用Hybrid Single Particle Lagrangian
Integrated Trajectory (HYSPLIT)模式進行氣流的逆軌跡追蹤,發現在
6、7 月份的高空氣流大部分來自西方,且傳輸路徑會行經亞洲夏季
季風區,8 月則來自東亞夏季季風區,可知台灣地區夏季卷雲發生機
率高的主要成因與夏季季風區之間有密切的關係。
Cirrus clouds are ice clouds of the upper troposphere and spreading
around the world. They are one of the important factors, which play
critical roles in the Earth‘s energy balance by reflecting, absorbing and
transmitting the solar radiation. Cloud ‐ Aerosol Lidar and Infrared
Pathfinder Satellite Observation(CALIPSO) provides us a chance to
observe the vertical structure of atmosphere by using lidar from space. It
is really helpful to study cirrus clouds around earth. Using a 3-year data
from CALIPSO, the occurrence frequency, layer base altitude, and optical
depth of cirrus clouds are studied. The investigation of cirrus clouds
shows the maximum occurrence frequency near the tropics. The results
show large latitude movement of cirrus clouds cover with the seasonal
distribution. In the north hemisphere, the maximum of cirrus clouds
frequency are around the Asia Summer Monsoon from June to August.
The frequency of cirrus cloud occurrence in Taiwan(20-30°N, 115-125°E)
are higher in summer, and the backward trajectories of air flow over
Taiwan by using Hybrid Single Particle Lagrangian Integrated Trajectory
Model (HYSPLIT), which can trace back to Asia Summer Monsoon and
East Asia Summer Monsoon. Thus, cirrus clouds could be transported
from Summer Monsoon to Taiwan.
Abshire, J. B., X. Sun, H. Riris, J. M. Sirota, J. F. McGarry, S. Palm, D. Yi, and P. Liiva (2005), Geoscience Laser Altimeter System (GLAS) on the ICESat Mission: On‐orbit measurement performance, Geophysical Research Letters, 32(21).
Boehm, M. T., and J. Verlinde (2000), Stratospheric influence on upper tropospheric tropical cirrus, Geophysical research letters, 27(19), 3209-3212.
Boehm, M. T., and S. Lee (2003), The implications of tropical Rossby waves for tropical tropopause cirrus formation and for the equatorial upwelling of the Brewer-Dobson circulation, Journal of the atmospheric sciences, 60(2), 247-261.
Borovikov, A. M., and A. K. Khrgian (1963), Cloud physics, Israel Program for Scientific Translations;[available from the Office of Technical Services, US Department of Commerce, Washington].
Brewer, A. (1949), Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere, Quarterly Journal of the Royal Meteorological Society, 75(326), 351-363.
Cadet, B., L. Goldfarb, D. Faduilhe, S. Baldy, V. Giraud, P. Keckhut, and A. Réchou (2003), A sub‐tropical cirrus clouds climatology from Reunion Island (21° S, 55° E) lidar data set, Geophysical research letters, 30(3).
Chang, F.-L., and Z. Li (2005), A near-global climatology of single-layer and overlapped clouds and their optical properties retrieved from Terra/MODIS data using a new algorithm, Journal of climate, 18(22), 4752-4771.
Comstock, J. M., T. P. Ackerman, and G. G. Mace (2002), Ground‐based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island: Cloud statistics and radiative impacts, Journal of Geophysical Research: Atmospheres (1984–2012), 107(D23), AAC 16-11-AAC 16-14.
Cox, S. K., D. S. McDougal, D. A. Randall, and R. A. Schiffer (1987), FIRE-the first ISCCP regional experiment, Bulletin of the American Meteorological Society, 68(2), 114-118.
Das, S. K., C. W. Chiang, and J. B. Nee (2011), Influence of tropical easterly jet on upper tropical cirrus: An observational study from CALIPSO, Aura‐MLS, and NCEP/NCAR data, Journal of Geophysical Research: Atmospheres (1984–2012), 116(D12).
Del Genio, A. D., and W. Kovari (2002), Climatic properties of tropical precipitating convection under varying environmental conditions, Journal of climate, 15(18), 2597-2615.
Dessler, A., S. Palm, and J. Spinhirne (2006), Tropical cloud-top height distributions revealed by the Ice, Cloud, and Land Elevation Satellite (ICESat)/Geoscience Laser Altimeter System (GLAS), Journal of geophysical research, 111(D12), D12215.
Dowling, D. R., and L. F. Radke (1990), A summary of the physical properties of cirrus clouds, Journal of Applied Meteorology, 29(9), 970-978.
Draxler, R., and G. Rolph (2003), HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model access via NOAA ARL READY website (http://www. arl. noaa. gov/ready/hysplit4. html). NOAA Air Resources Laboratory, Silver Spring, edited, Md.
Eguchi, N., and M. Shiotani (2004), Intraseasonal variations of water vapor and cirrus clouds in the tropical upper troposphere, Journal of geophysical research, 109(D12), D12106.
Eguchi, N., and K. Kodera (2007), Impact of the 2002, Southern Hemisphere, stratospheric warming on the tropical cirrus clouds and convective activity, Geophysical research letters, 34(5), L05819.
Eguchi, N., T. Yokota, and G. Inoue (2007), Characteristics of cirrus clouds from ICESat/GLAS observations, Geophysical Research Letters, 34(9), L09810.
Field, P. R., R. Cotton, D. Johnson, K. Noone, P. Glantz, P. Kaye, E. Hirst, R. Greenaway, C. Jost, and R. Gabriel (2001), Ice nucleation in orographic wave clouds: Measurements made during INTACC, Quarterly Journal of the Royal Meteorological Society, 127(575), 1493-1512.
Fiocco, G., and L. Smullin (1963), Detection of scattering layers in the upper atmosphere (60-140 km) by optical radar, Nature, 199, 1275-1276.
Francis, P., P. Hignett, and A. Macke (1998), The retrieval of cirrus cloud properties from aircraft multi‐spectral reflectance measurements during EUCREX'93, Quarterly Journal of the Royal Meteorological Society, 124(548), 1273-1291.
Fueglistaler, S., A. Dessler, T. Dunkerton, I. Folkins, Q. Fu, and P. W. Mote (2009), Tropical tropopause layer, Reviews of Geophysics, 47(1).
Fujiwara, M., S. Iwasaki, A. Shimizu, Y. Inai, M. Shiotani, F. Hasebe, I. Matsui, N. Sugimoto, H. Okamoto, and N. Nishi (2009), Cirrus observations in the tropical tropopause layer over the western Pacific, Journal of Geophysical Research, 114(D9), D09304.
Gayet, J. F., J. Ovarlez, V. Shcherbakov, J. Ström, U. Schumann, A. Minikin, F. Auriol, A. Petzold, and M. Monier (2004), Cirrus cloud microphysical and optical properties at southern and northern midlatitudes during the INCA experiment, Journal of Geophysical Research: Atmospheres (1984–2012), 109(D20).
Haladay, T., and G. Stephens (2009), Characteristics of tropical thin cirrus clouds deduced from joint CloudSat and CALIPSO observations, Journal of Geophysical Research: Atmospheres (1984–2012), 114(D8).
Hartmann, D. L., J. R. Holton, and Q. Fu (2001), The heat balance of the tropical tropopause, cirrus, and stratospheric dehydration, Geophysical research letters, 28(10), 1969-1972.
Heymsfield, A. (1972), Ice crystal terminal velocities, Journal of the Atmospheric Sciences, 29(7), 1348-1357.
Heymsfield, A., and G. McFarquhar (2002), Mid-latitude and tropical cirrus: Microphysical properties, edited, pp. 78-101, Oxford U. Press.
Heymsfield, A. J., and C. Platt (1984), A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content, Journal of the atmospheric sciences, 41(5), 846-855.
Heymsfield, A. J., and L. M. Miloshevich (1995), Relative humidity and temperature influences on cirrus formation and evolution: Observations from wave clouds and FIRE II, Journal of the atmospheric sciences, 52(23), 4302-4326.
Heymsfield, A. J., and G. M. McFarquhar (1996), High albedos of cirrus in the tropical Pacific warm pool: Microphysical interpretations from CEPEX and from Kwajalein, Marshall Islands, Journal of the atmospheric sciences, 53(17), 2424-2451.
Heymsfield, A. J., and L. M. Miloshevich (2003), Parameterizations for the cross-sectional area and extinction of cirrus and stratiform ice cloud particles, Journal of the atmospheric sciences, 60(7), 936-956.
Heymsfield, A. J., A. Bansemer, P. R. Field, S. L. Durden, J. L. Stith, J. E. Dye, W. Hall, and C. A. Grainger (2002), Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns, Journal of the atmospheric sciences, 59(24), 3457-3491.
Highwood, E., and B. Hoskins (1998), The tropical tropopause, Quarterly Journal of the Royal Meteorological Society, 124(549), 1579-1604.
Holton, J. R., and A. Gettelman (2001), Horizontal transport and the dehydration of the stratosphere, Geophysical Research Letters, 28(14), 2799-2802.
Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister (1995), Stratosphere‐troposphere exchange, Reviews of Geophysics, 33(4), 403-439.
Houze Jr, R. A. (1994), Cloud dynamics, Access Online via Elsevier.
Immler, F., and O. Schrems (2002), Determination of tropical cirrus properties by simultaneous LIDAR and radiosonde measurements, Geophysical research letters, 29(23), 2090.
Immler, F., K. Krüger, M. Fujiwara, G. Verver, M. Rex, and O. Schrems (2008), Correlation between equatorial Kelvin waves and the occurrence of extremely thin ice clouds at the tropical tropopause, Atmospheric Chemistry and Physics, 8(14), 4019-4026.
Isono, K., M. Komabayasi, and A. Ono (1959), The nature and origin of ice nuclei in the atmosphere, J. Meteor. Soc. Japan, 37(6), 211-233.
Jensen, E. J., O. B. Toon, H. B. Selkirk, J. D. Spinhirne, and M. R. Schoeberl (1996), On the formation and persistence of subvisible cirrus clouds near the tropical tropopause, Journal of Geophysical Research: Atmospheres (1984–2012), 101(D16), 21361-21375.
Kosarev, A., and I. Mazin (1991), An empirical model of the physical structure of upper-layer clouds, Atmospheric research, 26(3), 213-228.
Liou, K.-N. (1986), Influence of cirrus clouds on weather and climate processes: A global perspective, Monthly Weather Review, 114(6), 1167-1199.
Liou, K., S. Ou, Y. Takano, F. Valero, and T. Ackerman (1990), Remote sounding of the tropical cirrus cloud temperature and optical depth using 6.5 and 10.5 μm radiometers during STEP, Journal of Applied Meteorology, 29(8), 716-726.
Massie, S., A. Gettelman, W. Randel, and D. Baumgardner (2002), Distribution of tropical cirrus in relation to convection, Journal of Geophysical Research: Atmospheres (1984–2012), 107(D21), AAC 19-11-AAC 19-16.
McFarquhar, G. M., and A. J. Heymsfield (1996), Microphysical characteristics of three anvils sampled during the Central Equatorial Pacific Experiment, Journal of the atmospheric sciences, 53(17), 2401-2423.
McFarquhar, G. M., A. J. Heymsfield, J. Spinhirne, and B. Hart (2000), Thin and subvisual tropopause tropical cirrus: Observations and radiative impacts, Journal of the atmospheric sciences, 57(12), 1841-1853.
Mergenthaler, J., A. Roche, J. Kumer, and G. Ely (1999), Cryogenic limb array etalon spectrometer observations of tropical cirrus, Journal of Geophysical Research: Atmospheres (1984–2012), 104(D18), 22183-22194.
Mitchell, D. L. (1996), Use of mass-and area-dimensional power laws for determining precipitation particle terminal velocities, Journal of the atmospheric sciences, 53(12), 1710-1723.
Nazaryan, H., M. P. McCormick, and W. P. Menzel (2008), Global characterization of cirrus clouds using CALIPSO data, Journal of Geophysical Research: Atmospheres (1984–2012), 113(D16).
Nee, J., C. Chian, and W. Chen (2005), Lidar studies of the microphysical and optical properties of thin cirrus clouds, paper presented at Optical Technologies for Atmospheric, Ocean, and Environmental Studies, International Society for Optics and Photonics.
Nee, J., G. Wang, P. Lee, and S. Lin (1995), Lidar studies of particles and temperatures of the atmosphere: First results from National Central University lidar, Radio science, 30(4), 1167-1175.
Nee, J., C. Len, W. Chen, and C. Lin (1998), Lidar observation of the cirrus cloud in the tropopause at Chung-Li (25 N, 121 E), Journal of the atmospheric sciences, 55(12), 2249-2257.
Pfister, L., H. B. Selkirk, E. J. Jensen, M. R. Schoeberl, O. B. Toon, E. V. Browell, W. B. Grant, B. Gary, M. J. Mahoney, and T. V. Bui (2001), Aircraft observations of thin cirrus clouds near the tropical tropopause, Journal of Geophysical Research: Atmospheres (1984–2012), 106(D9), 9765-9786.
Platt, C., and A. Dilley (1981), Remote sounding of high clouds. IV: Observed temperature variations in cirrus optical properties, Journal of the atmospheric sciences, 38(5), 1069-1082.
Prabhakara, C., D. Kratz, J.-M. Yoo, G. Dalu, and A. Vernekar (1993), Optically thin cirrus clouds: Radiative impact on the warm pool, Journal of Quantitative Spectroscopy and Radiative Transfer, 49(5), 467-483.
Pruppacher, H. R., J. D. Klett, and P. K. Wang (1998), Microphysics of clouds and precipitation.
Ramanathan, V., and W. Collins (1991), Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Nino, Nature, 351(6321), 27-32.
Rosinski, J., and G. Morgan (1991), Cloud condensation nuclei as a source of ice-forming nuclei in clouds, Journal of Aerosol Science, 22(2), 123-133.
Rydberg, B., P. Eriksson, and S. Buehler (2007), Prediction of cloud ice signatures in submillimetre emission spectra by means of ground‐based radar and in situ microphysical data, Quarterly Journal of the Royal Meteorological Society, 133(S2), 151-162.
Sandor, B. J., E. J. Jensen, E. M. Stone, W. G. Read, J. W. Waters, and J. L. Mergenthaler (2000), Upper tropospheric humidity and thin cirrus, Geophysical research letters, 27(17), 2645-2648.
Sassen, K. (1991), The polarization lidar technique for cloud research: A review and current assessment, Bulletin of the American Meteorological Society, 72(12), 1848-1866.
Sassen, K., and B. S. Cho (1992), Subvisual-Thin Cirrus Lidar Dataset for Satellite Verification and Climatological Research, Journal of Applied Meteorology, 31(11), 1275-1285.
Sassen, K., Z. Wang, and D. Liu (2008), Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements, Journal of Geophysical Research: Atmospheres, 113(D8), D00A12.
Schutz, B., H. Zwally, C. Shuman, D. Hancock, and J. DiMarzio (2005), Overview of the ICESat mission, Geophysical Research Letters, 32(21), L21S01.
Seifert, P., A. Ansmann, D. Müller, U. Wandinger, D. Althausen, A. Heymsfield, S. Massie, and C. Schmitt (2007), Cirrus optical properties observed with lidar, radiosonde, and satellite over the tropical Indian Ocean during the aerosol‐polluted northeast and clean maritime southwest monsoon, Journal of Geophysical Research: Atmospheres (1984–2012), 112(D17).
Sherwood, S. C., and A. E. Dessler (2000), On the control of stratospheric humidity, Geophysical Research Letters, 27(16), 2513-2516.
Sherwood, S. C., and A. E. Dessler (2003), Convective mixing near the tropical tropopause: Insights from seasonal variations, Journal of the atmospheric sciences, 60(21), 2674-2685.
Spinhirne, J. D., S. P. Palm, W. D. Hart, D. L. Hlavka, and E. J. Welton (2005), Cloud and aerosol measurements from GLAS: Overview and initial results, Geophysical Research Letters, 32(22).
Sunil Kumar, S., K. Parameswaran, and B. Krishna Murthy (2003), Lidar observations of cirrus cloud near the tropical tropopause: General features, Atmospheric research, 66(3), 203-227.
Sunilkumar, S., and K. Parameswaran (2005), Temperature dependence of tropical cirrus properties and radiative effects, Journal of Geophysical Research: Atmospheres (1984–2012), 110(D13).
Uthe, E., and P. Russell (1977), Lidar observations of tropical high-altitude cirrus clouds, paper presented at Radiation in the Atmosphere.
Veerabuthiran, S. (2004), High-altitude cirrus clouds and climate, Resonance, 9(3), 23-32.
Wallace, J. M., and P. V. Hobbs (2006), Atmospheric science: an introductory survey, Academic press.
Wang, L., and A. E. Dessler (2006), Instantaneous cloud overlap statistics in the tropical area revealed by ICESat/GLAS data, Geophysical research letters, 33(15).
Wang, P. H., P. Minnis, M. P. McCormick, G. S. Kent, and K. M. Skeens (1996), A 6‐year climatology of cloud occurrence frequency from Stratospheric Aerosol and Gas Experiment II observations (1985–1990), Journal of Geophysical Research: Atmospheres (1984–2012), 101(D23), 29407-29429.
Wang, T., and A. E. Dessler (2012), Analysis of cirrus in the tropical tropopause layer from CALIPSO and MLS data: A water perspective, Journal of Geophysical Research: Atmospheres (1984–2012), 117(D4).
Winker, D., and C. Trepte (1998), Laminar cirrus observed near the tropical tropopause by LITE, Geophysical research letters, 25(17), 3351-3354.
Winker, D. M., R. H. Couch, and M. McCormick (1996), An overview of LITE: NASA's lidar in-space technology experiment, Proceedings of the IEEE, 84(2), 164-180.
Winker, D. M., J. Pelon, and M. P. McCormick (2003), The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds, paper presented at Proc. Spie.
Winker, D. M., W. H. Hunt, and M. J. McGill (2007), Initial performance assessment of CALIOP, Geophysical Research Letters, 34(19).
Wylie, D. P., and W. P. Menzel (1999), Eight years of high cloud statistics using HIRS, Journal of Climate, 12(1), 170-184.
Wylie, D. P., W. P. Menzel, H. M. Woolf, and K. I. Strabala (1994), Four years of global cirrus cloud statistics using HIRS, Journal of Climate, 7(12), 1972-1986.
Yang, Q., Q. Fu, and Y. Hu (2010), Radiative impacts of clouds in the tropical tropopause layer, Journal of Geophysical Research: Atmospheres (1984–2012), 115(D4).