| 研究生: |
王仁傑 Jen-Chieh Wang |
|---|---|
| 論文名稱: |
應用於高解析視訊之可適性降取樣編碼架構 Adaptive Down-sampling Coding Scheme for High-difinition Video |
| 指導教授: |
張寶基
Pao-Chi Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 視訊編碼 、降取樣 、H.264 、計算複雜度 |
| 外文關鍵詞: | Video coding, Down-sampling, H.264, computation complexity |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一有效的編碼架構,針對高解析視訊做壓縮編碼,主要分為兩個部份,首先參考降取樣編碼架構,研究降取樣率的最佳化來提升編碼的位元率-失真表現,再來,論文進一步考慮複雜度的問題以利系統實際實現。
降取樣編碼架構是本論文主要參考的方式之一,在傳統視訊編碼器前先做降取樣的動作,再於解碼器之後將重建畫面升取樣回原始解析度,不同於參考文獻中的降取樣編碼架構使用固定的降取樣率,本論文提出一隨著視訊內容及位元率而改變之降取樣率,能使得位元率-失真表現比固定降取樣率來得好,在高位元率有2dB以上的增益;與傳統H.264編碼方式相比在中低位元率有2dB到4dB的增益。
在複雜度方面,由於文獻資料較少針對不同畫面解析度做討論,論文先觀察在不同解析度下H.264各編碼工具的效益變動,最後提出在可適性降取樣編碼架構下針對不同解析度選擇不同的編碼參數,在視訊品質幾乎不變下能大大節省編碼時間,實驗結果顯示整個所提的編碼架構相對於傳統H.264編碼方式能減少九成以上的編碼時間,並保持在小於、近似固定降取樣率架構之複雜度。
High-definition (HD) video that provides enhanced viewing experience is becoming increasingly popular. However, HD video requires large transmission bandwidth and computation complexity. This thesis proposes an efficient coding scheme for HD video by utilizing sub-sampling technique. First, we propose a down-sampling coding scheme with adaptive resolution-ratio to achieve better rate-distortion performance for video signals. And then, the computational complexity is greatly reduced by skipping un-necessary encoding modes.
The Down-sampling coding, which sub-samples the image and encodes the smaller sized images, is one of the solutions to raise the image quality under insufficient rates. An adaptive resolution-ratio for down-sampling coding is utilized instead of fixed resolution-ratio. The optimum resolution-ratio is derived based on the models of down-sampling distortion and coding distortion. Simulation results show that the rate-distortion performance of adaptive resolution-ratio is higher than H.264 by 2 to 4 dB at low to medium rates.
The complexity analysis of encoding tools for video at different resolutions has not been addressed much. This work analyzed quality gain of high complexity tools at different resolutions. Based on this analysis, we propose an adaptive encoding configuration scheme to reduce the computation complexity by skipping modes with low quality gains. As simulation results are shown, with almost the same rate-distortion performance, the proposed scheme further reduces complexity of the down-sampling coding. Compared with H.264, it has 90% complexity reduction at low to medium bitrates.
[1] ISO/IEC ITU-T Rec. H264: Advanced Video Coding for Generic Audiovisual Services, Joint Video Team (JVT) of ISO-IEC MPEG & ITU-T VCEG, Int. Standard, May 2003.
[2] R. C. Gonzalez and R. E. Woods, “Digital Image Processing (second Edition)”, Prentice Hall.
[3] A. Bruckstein, M. Elad and R. Kimmel, “Down Scaling for Better Transform Compression”, IEEE Trans. On Image Processing, Vol. 12, No. 9, pp. 1132-44, Sept. 2003.
[4] R. Molina, A.K. Katsaggelos, L.D. Alvarez, and J. Mateos, “Towards a new video compression scheme using super-resolution” in Proc. of SPIE-IS&T Electronic Imaging, Visual Communications and Image Processing 2006, edited by John G. Apostolopoulos and Amir Said, vol. 6077, 607706-1 607706-13, San Jose, CA (USA), January 2006.
[5] C. A. Segall, M. Elad, P. Milanfar, R. Webb and C. Fogg, “Improved High-Definition Video by Encoding at an Intermediate Resolution,” Proceedings of the SPIE Conference on Visual Communications and Image Processing, San Jose, CA,.Jan. 18-22, 2004.
[6] D. Barreto, L.D. Alvarez, R. Molina, A. K. Katsagelos, G.M. Callico, “Region-based super-resolution for compression,” (Multidim syst sign process,) Springer Science +Business media, LLC 2007, pp. 18:59-81 March 2007.
[7] M. Irani and S. Peleg, “Improving resolution by image registration,” CVGIP: Graphical Models and Image Processing, vol. 53, no. 3, pp. 231–239, May 1991.
[8] S C Park, M K Park, M G Kang, “Super-resolution image reconstruction: a technical review[J]. IEEE signal processing magazine, 2003, (5):21-36
[9] J.T. Wang, S.F. Chang, K.W. Lian, and P.C. Chang, “High Frequency Compensated Super-Resolution Algorithm,” in Proc. of Workshop on Consumer Electronics (WCE), pp. 278-283, Taipei, Taiwan, Dec. 2008.
[10] P.C. Chang, and T.L. Wu, “Region Weighted Satellite Super-resolution Technology,” in Proc. of National Symposium on Telecommunications (NST), Taipei, Taiwan, pp. 199-203, Nov. 2007.
[11] GM Callicó, RP Llopis, S López, JF López, “Low-Cost Super-Resolution Algorithms Implementation over a HW/SW Video Compression Platform,” EURASIP Journal on Applied Signal Processing, 2006.
[12] S. Borman,M. A. Robertson, and R. L. Stevenson, “Block-matching sub-pixel motion estimation from noisy, under-sampled frames —An empirical performance evaluation,” in Vis. Commun. Image Process. ’99, San Jose, USA, vol. 3653, pp. 1442–1451, 1999.
[13] L. D. Alvarez, J. Mateos, R. Molina, and A. K. Katsaggelos, “High resolution images from compressed low resolution video: Motion estimation and observable pixels,” Int. J. Imaging Syst. Technol., vol. 14, pp. 58–66, 2004. doi:10.1002/ima.20008
[14] C.A. Segall, R. Molina, and A. K. Katsaggelos, “High-resolution images from low-resolution compressed video”, IEEE signal processing magazine, pp. 37, May 2003.
[15] T. Berger, Rate Distortion Theory. Englewood Cliffs, NJ: Prentice-Hall, 1984.rate distortion model
[16] 黃振原, “實現於RISC架構之H.264視訊編碼複雜度控制,” 國立中央大學通訊工程學系碩士論文, July 2008.
[17] Z. Y. Liu, L. F. Li, Y. Song, S. Li, S. Goto, and T. Ikenaga, “Motion Feature and Hadamard Coefficient Based Multiple Reference Frame Motion Estimation for H.264,” IEEE Transactions on Circuits and Systems for Video Technology, Vol.18, pp. 620-32, May 2008.
[18] S. E. Kim, J. K. Han, J. G. Kim, “An efficient scheme for motion estimation using multireference frames in H.264/AVC,” IEEE Transactions on Multimedia, vol. 8, Issue 3, pp. 457-466, June 2006.
[19] A.C.W. Yu, G.R. Martin, H. Park, “Fast Inter-Mode Selection in the H.264/AVC Standard Using a Hierarchical Decision Process,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 18, Issue 2, Feb. 2008, pp. 186 – 195.
[20] J.K. Lin, H.M. Wang, J.F. Yang, “Matched Block Detection and Motion Vector Salvage Methods for Fast H.264/AVC Inter Mode Decision,” APCCAS 2006, 4-7 Dec. 2006, pp. 251 – 254.
[21] C. Kim and J. Xin, “Hierarchical complexity control of motion estimation for H.264/AVC,” MITSUBISHI ELECTRIC RESEARCH LABORATORIES, TR2006-004, Dec. 2006. Available: http://www.merl.com
[22] 鄭玉欣, “應用於高解析視訊之H.264 時空階層式移動估測快速演算法,” 國立中央大學通訊工程學系碩士論文, July 2008.
[23] Y. Hu, Q. Li, S. Ma, and C. C. J. Kuo, “Joint rate-distortion-complexity optimization for H.264 motion search,” in Proc. ICME 2006, pp. 1949-1952.
[24] R. Feghali, F. Speranza, D. Wang, and A. Vincent, “Video Quality Metric for Bit Rate Control via Joint Adjustment of Quantization and Frame Rate”, IEEE Transactions on Broadcasting, Vol.53, pp. 441-446, March 2007.
[25] M. A. Robertson and R. L. Stevenson, “Temporal Resolution Enhancement in Compressed Video Sequences,” EURASIP Journal on Applied Signal Processing: Special Issue on Nonlinear Signal Processing, pp.230-238, Dec. 2001.