| 研究生: |
安亞迪 Adi Ankafia |
|---|---|
| 論文名稱: |
衛星遙測印度尼西亞邦加島 Namang 村Pelawan 紅菇 (Heimioporus sp.)的產量 Remote Sensing of Pelawan Red Mushroom Yield (Heimioporus sp.) in Namang Village, Bangka Island, Indonesia |
| 指導教授: |
林唐煌
Tang-Huang Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
太空及遙測研究中心 - 遙測科技碩士學位學程 Master of Science Program in Remote Sensing Science and Technology |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 土地利用 、Pelawan 樹 、Pelawan 紅蘑菇 、遙測產量 、LAI |
| 外文關鍵詞: | LULC, Pelawan Trees, Pelawan Red Mushroom, Yield Estimation |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
Pelawan 紅蘑菇(Heimioporus sp.)是一種食用菌,作為外生菌根真菌存在於 Pelawan 樹 (Tristaniopsis merguensis) 的根系中,是生態系中相當重要的資源。邦加島為 印尼的主要產地之一,但尚未正確記錄當地蘑菇的潛在種質資源。本研究旨在提供有
關使用衛星遙測技術估算 Namang 村 Pelawan 紅蘑菇的產量。由於這種蘑菇與寄主的
檳榔樹共生,因此需要先進行地表物種分類以確認檳榔樹面積,還有植被指數,如檳 榔樹面積的 NDVI (Normalized Difference Vegetation Index),EVI (Enhanced Vegetation Index)和 SAVI (Soil Adjusted Vegetation Index),並藉由葉面積指數(Leaf Area Index, LAI)和植被指數之間的相關性,進行每年 Pelawan 紅蘑菇產量的估算。研究結果顯示,
基於 LAI-NDVI 和 LAI-EVI 相關性的估計產量與實際產量間差異的均方根誤差 (RMSE) 值在 2018 年和 2021 年分別為 0.12 和 0.11,表示產量估算模式具有相當的準確性和可
靠性,適合實際應用。
關鍵詞:土地利用、Pelawan 樹、Pelawan 紅蘑菇、遙測產量、LAI
i
Abstract
One of the potential germplasms that has not been properly recorded on Bangka Island is indigenous mushrooms, namely Pelawan red mushrooms (Heimioporus sp.) and their potential uses. Pelawan red mushroom is a type of edible fungus that is found in the root system of Pelawan trees (Tristaniopsis merguensis) as an ectomycorrhizal fungus. Research on Pelawan red mushrooms related to yield estimation has never been carried out. This research aimed to provide information related to yield estimation of Pelawan red mushrooms in Namang Village using a remote sensing approach. The observation was conducted 2 times in 2018 and 2021. Because this mushroom exists in symbiosis with Pelawan trees as the host tree, firstly, it is necessary to determine LULC to mark the Pelawan trees area, also vegetation index, including NDVI, EVI, and SAVI in the Pelawan trees area, so that the existing area can help in yield estimation of Pelawan red mushroom for each year. The yield estimation model approach used the correlation between Leaf Area Index (LAI) and the vegetation index. The evaluation demonstrated that Root Mean Squared Error (RMSE) values, which represent the difference between the actual yield and the estimated yield based on the LAI - NDVI and LAI - EVI correlations, were consistently 0.12 and 0.11 in both 2018 and 2021. This indicates the high accuracy and reliability of the estimated models, making them suitable for practical applications. Additionally, Mean Absolute Percentage Error (MAPE) values for the LAI - NDVI correlation were 28.25% in 2018 and 23.23% in 2021, while for the LAI - EVI correlation, the MAPE values were 27.33% in 2018 and 21.44% in 2021. These values further reinforce the notion that the estimation models fall within the range of reasonable estimation, affirming their validity and effectiveness.
Keywords: LULC, Pelawan Trees, Pelawan Red Mushroom Yield Estimation, LAI, Remote Sensing.
ii
References
Alqurashi, A., & Kumar, L. (2013). Investigating the use of remote sensing and GIS techniques to detect land use and land cover change: A review. Advances in Remote Sensing, 2, 193-204.
Bashir, R. D., Baharin, B. A., Malik, R. A. S., & Hafiz, Z. U. (2015). Review of Change Detection Techniques from Remotely Sensed Images. Research Journal of Applied Sciences, Engineering and Technology, 2(10), 221-229.
Blaschke, T., Hay, G. J., Weng, Q., & Resch, B. (2011). Collective sensing: integrating geospatial technologies to understand urban systems - an overview. Remote Sensing, 3(8), 1743–1776.
Bruun, E. W., Hauggaard-Nielsen, H., Ibrahim, N., Egsgaard, H., Ambus, P., Jensen, P. A., & Dam-Johansen, K. (2010). Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biology and Biochemistry, 46, 73-79.
Bruzzone, L., Cossu, R., & Vernazza, G. (2002). Combining parametric and non-parametric algorithms for a partially unsupervised classification of multitemporal remote sensing images. Information Fusion, 3, 289-297.
Budiyanto, E. (2012). V egetation Index. Retrieved November 4, 2014, from http://geo.fis.unesa.ac.id/web/index.php/en/sensing-far/77-index-vegetation.
Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2), 121-167.
Chang, Y., Hou, K., Li, X., Zhang, Y., & Chen, P. (2018). Review of Land Use and Land Cover Change research progress. IOP Conference Series: Earth and Environmental Science, 113, 012087.
Chen, B., Tu, Y., Song, Y., Theobald, D. M., Zhang, T., Ren, Z., Li, X., Yang, J., Wang, J., Wang, X., et al. (2021). Mapping essential urban land use categories with open big data: Results for five metropolitan areas in the United States of America. ISPRS Journal of Photogrammetry and Remote Sensing, 178, 203-218.
Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37-46.
Colombo, R., Bellingeri, D., Fasolini, D., & Marino, C. M. (2003). Retrieval of leaf area index in different vegetation types using high-resolution satellite data. Remote Sensing of Environment, 86, 120-131.
Comber, A. J., Fisher, P. F., & Wadsworth, R. A. (2003). Actor Network Theory: A Suitable Framework to Understand How Land Cover Mapping Projects Develop? Land Use Policy, 20, 299-309.
Congalton, R. G. (1991). A review of assessing the accuracy of classification of remotely sensed data. Remote Sensing of Environment, 37, 35–46.
69
Congalton, R. G., & Green, K. (1999). Assessing the accuracy of remotely sensed data: Principles and practices. Boca Raton, FL: CRC/Lewis Press.
Danoedoro, P. (2009). Land-Use Information From the Satellite Imagery: Versatility and Contents for Local Physical Planning. Lambert Academy Publishing.
Danoedoro, P. (2016). The Influence of the Number and Method of Test Sample Collection on the Accuracy Level of Remote Sensing Digital Image Classification. In Proceedings of the 4th National Symposium on Geoinformation Sciences (pp. 1).
Declerck, S., Vandekerkhove, J., Johansson, L., Muylaert, K., Conde-Porcuna, J. M., Van der Gucht, K., ... & De Meester, L. (2005). Multi-group biodiversity in shallow lakes along gradients of phosphorus and water plant cover. Ecology, 86(7), 1905-1915.
Dick, R. P., Breakwell, D. P., & Turco, R. F. (2000). Soil acid and alkaline phosphatase activity as pH adjustment indicators. Soil Biology and Biochemistry, 32(13), 1915-1919.
Foy, C. D. (1992). Soil chemical factors limiting plant root growth. Advances in Soil Science, 19, 97-149.
Gao, S., Niu, Z., Huang, N., & Hou, X. (2013). Estimating the leaf area index, height and biomass of maize using Hj-1 and RADARSAT-2. International Journal of Applied Earth Observation and Geoinformation, 24, 1-8.
Gounaridis, D., Apostolou, A., & Koukoulas, S. (2016). Land cover of Greece, 2010: a semi- automated classification using random forests. Journal of Maps, 12(5), 1055-1062.
Gowda, P. H., Howell, T. A., Chavez, J. L., Paul, G., Moorhead, J. E., Holman, D., Marek, T. H., Porter, D. O., Marek, G. H., Colaizzi, P. D., et al. (2015). A decade of remote sensing and evapotranspiration research at USDA_ARS conservation and production research laboratory. In Proceedings of the Emerging technologies for sustainable irrigation a joint ASABE/IA Irrigation Symposium, Long Beach, CA, USA, 10-12 November 2015.
Griffin, D. M. (1981). Water and Microbial Stress. Advances in Microbial Ecology, 5, 91-136.
Gungor, Y., Yüksel, Ü., Tokatli, C., & Kutman, U. B. (2010). Zinc release by humic and fulvic acid as influenced by pH, complexation and DOC sorption. Geoderma, 159(1-2), 131-138.
Hanafiah, K. A. (2007). Fundamentals of Soil Science. Jakarta: PT. Raja Grafindo Persada. Hardjowigeno. (2010). Soil Science. Jakarta: Mediyatama Pressindo.
Hasan, S.S., Zhen, L., Miah, M.G., Ahamed, T., & Samie, A. (2020). Impact of land use change on ecosystem services: A review. Environmental Development, 34, 100527.
Hermon, D. (2009). Settlement Areas Dynamics and Alternative Policy of Settlement Development in Landslide Prone Areas in Padang City (Unpublished doctoral dissertation). Bogor: IPB.
70
Hermon, D. (2016a). The Changes of Carbon Stocks and CO2 Emission as The Result of Land Cover Change for Tin Mining and Settlement in Belitung Island Indonesia. Journal of Geography and Earth Sciences, 4, 17-30.
Hosseini, M., McNairn, H., Merzouki, A., & Pacheco, A. (2015). Estimation of leaf area index (LAI) in corn and soybean using multi-polarization C- and L-band radar data. Remote Sensing of Environment, 170, 77–89.
Huang, D. (2017). Accuracy Assessment Model For Classification Result of Remote Sensing Image Based on Spatial Sampling. Journal of Applied Remote Sensing, 11, 1–13.
Huete, A. (1988). A Soil-Adjusted Vegetation Index (SAVI). Remote Sensing of Environment, 25, 295-309.
Huete, A.R., & Justice, C. (1999). MODIS vegetation index (MOD13) algorithm theoretical basis document. Ver. 3.
Imam, E. (2017). Habitat Suitability Modelling for Sambar (Rusa unicolor): A Remote Sensing and GIS Approach. In Environment and Earth Observation (pp. 231-246). Cham: Springer.
Jensen, J. R. (2005). Introductory Digital Image Processing: A Remote Sensing Perspective. Upper Saddle River, NJ: Pearson Prentice Hall.
Joshi, N., Baumann, M., Ehammer, A., Fensholt, R., Grogan, K., Hostert, P., Jepsen, M.R., Kuemmerle, T., Meyfroidt, P., Mitchard, E.T., et al. (2016). A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring. Remote Sensing, 8, 70.
Kachhwala, T.S. (1985). Temporal monitoring of forest land for change detection and forest cover mapping through satellite remote sensing. In Proceedings of the 6th Asian Conference on Remote Sensing (pp. 77-83).
Knight, E.J., & Kvaran, G. (2014). Landsat-8 operational land imager design, characterization, and performance. Remote Sensing, 6.
Liang, L., Di, L., Zhang, L., Deng, M., Qin, Z., Zhao, S., & Lin, H. (2015). Estimation of crop LAI using hyperspectral indices and a hybrid inversion method. Remote Sensing of Environment, 165, 123–134.
Lillesand, T.M., & Kiefer, R.W. (1999). Remote Sensing and Image Interpretation. New York, NY: Wiley.
Lillesand, T., Kiefer, R. W., & Chipman, J. (2014). Remote sensing and image interpretation. New Jersey, US: John Wiley & Sons.
Liu, J., Heiskanen, J., Aynekulu, E., & Pellikka, P. K. E. (2015). Seasonal variation of land cover classification accuracy of Landsat 8 images in Burkina Faso. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-7/W3, 455-460.
71
Liu, H.Q., & Huete, A.R. (1995). A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Transactions on Geoscience and Remote Sensing, 33, 457–465.
Majd, M.S., Simonetto, E., & Polidori, L. (2012). Maximum likelihood classification of single high-resolution polarimetric SAR images in urban areas. Photogrammetrie, Fernerkundung, Geoinformation, (4), 395-407.
Manserud, R.A., & Leemans, R. (1992). Comparing global vegetation maps with the kappa statistics. Ecological Modelling, 62, 275–279.
Mesev, V. (2001). Modified maximum likelihood classifications of urban land use: Spatial segmentation of prior probabilities. Geocarto International, 16(4), 41-48.
Meyer, W.B., & Turner, B.L. (1992). Human population growth and global land-use/cover change. Annual Review of Ecology and Systematics, 23, 39–61.
Ministry of Planning, Ministry of Cooperation, Ministry of Health. (2008). Comprehensive food security and vulnerability analysis in Iraq: Methodology.
Mohan Rajan, S.N., Loganathan, A., & Manoharan, P. (2020). Survey on Land Use/Land Cover (LU/LC) change analysis in remote sensing and GIS environment: Techniques and Challenges. Environmental Science and Pollution Research, 27, 29900-29926.
Montanaro, M., Levy, R., & Markham, B. (2014). On-orbit radiometric performance of the Landsat 8 thermal infrared sensor. Remote Sensing, 8.
Montgomery, D. C., Peck, E. A., & Vining, G. G. (2012). Introduction to Linear Regression Analysis, 5th Edition. Wiley.
Mora, B., Tsendbazar, N.E., Herold, M., & Arino, O. (2014). Global land cover mapping: Current status and future trends. In I. Manakos & M. Braun (Eds.), Land Use and Land Cover Mapping in Europe (Vol. 18, pp. 11-30). Dordrecht, The Netherlands: Springer.
Mukhoriyah, & Yudhatama, D. (2015). Identification of Former Tin Mining Areas Using Remote Sensing Satellite Imagery (Case Study: West Bangka Regency). Proceedings of the Scientific Meeting, 897-903.
Nguy-Robertson, A., Gitelson, A., Peng, Y., Viña, A., Arkebauer, T., & Rundquist, D. (2012). Green leaf index estimation in maize and soybean: Combining vegetation indices to achieve maximal sensitivity. Agronomy Journal, 104, 1336–1347.
Omotehinse, A.O., & Ako, B.D. (2019). The Environmental Implications of the Exploration and Exploitation of Solid Minerals in Nigeria with a special focus on Tin in Jos and Coal in Enugu. Journal of Sustainable Mining, 18, 18-24.
Pal, M., & Mather, P.M. (2004). Assessment of the Effectiveness of Support Vector Machines for Hyperspectral Data. Future Generation Computer Systems, 20(7), 1215-1225.
72
Parece, T.E., & Campbell, J.B. (2015). Land use/land cover monitoring and geospatial technologies: An overview. In T. Younos & T. Parece (Eds.), Advances in Watershed Science and Assessment (Vol. 33, pp. 1-32). Cham, Switzerland: Springer.
Pettorelli, N., Vik, J., Mysterud, A., Gaillard, J.-M., Tucker, C.J., & Stenseth, N.C. (2005). Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology and Evolution, 20, 503-510.
Phiri, D., & Morgenroth, J. (2017). Developments in Landsat land cover classification methods: A review. Remote Sensing, 9, 967.
Postma, J., Schilder, M. T., & van Elsas, J. D. (2006). Root colonisation by arbuscular mycorrhizal, fine endophytic and dark septate fungi across a pH gradient in acid beech forests. Soil Biology and Biochemistry, 39(2), 400-408.
Ramachandran, R.M., & Reddy, C.S. (2017). Monitoring of deforestation and land use changes (1925–2012) in Idukki district, Kerala, India using remote sensing and GIS. Journal of Indian Society of Remote Sensing, 45(1), 163–170.
Richards, J. A., & Richards, J. (1999). Remote Sensing Digital Image Analysis. Berlin, Heidelberg, New York: Springer-Verlag.
Ridwan, M. A., Radzi, N. A. M., Ahmad, W. S. H. M. W., Mustofa, I. S., Din, N. M., Jalil, Y. E., Isa, A. M., Othman, N. S., & Zaki, W. M. D. W. (2018). Applications of Landsat-8 Data: A Survey. International Journal of Engineering & Technology, 7(4.35), 436-441.
Rogan, J., & Chen, D. (2004). Remote sensing technology for mapping and monitoring land- cover and land-use change. Progress in Planning, 61, 301-325.
Rosenfield, G.H., & Fitzpatrick-Lins, K. (1979). A coefficient of agreement as a measure of thematic classification accuracy. Photogrammetric Engineering and Remote Sensing, 52, 223– 227. (1986).
Rwanga, S.S., & Ndambuki, J.M. (2017). Accuracy assessment of land use/land cover classification using remote sensing and GIS. International Journal of Geosciences, 8, 611-622.
Salm, S.M., Van Dijk, M.A., & Van Riemsdijk, W.H. (1998). Assessment of weathering rates in Dutch loess and river-clay soils at pH 3.5, using laboratory experiments. Geoderma, 85(1), 41-62.
Salma, L.A. (2013). Specific Primer Designed for Early Detection of Edible Ectomycorrhiza Pelawan [Master's thesis, Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University].
Seber, G. A. F., & Lee, A. J. (2003). Linear Regression Analysis, 2nd Edition. Wiley.
Sellers, P.J., Meeson, B.W., Hall, F.G., Asrar, G., Murphy, R.E., Schiffer, R.A., Bretherton, F.P., Dickinson, R.E., Ellingson, R.G., Field, C.B., Huemmrich, K.F., Justice, C.O., Melack, J.M., Roulet, N.T., Schimel, D.S., & Try, P.D. (1995). Remote Sensing of the Land Surface for Studies of Global Change: Models—Algorithms—Experiments.
73
Sosef, M.S.M., Hong, L.T., & Prawirohatmodjo, S. (1998). Plant Resources of South-East Asia: Timber trees; Lesser-known timbers.
Taiz, L., & Zeiger, E. (2002). Plant Physiology (3rd ed.). Sunderland, MA: Sinauer Associates, Inc.
Tang, R., Li, Z.-L., Jia, Y., Li, Ch., Sun, X., Kustas, W.P., & Anderson, M.C. (2011). An intercomparison of three remote sensing-based energy balance models using large aperture scintillometer measurement over a wheat-corn production region. Remote Sensing of Environment, 115, 3187-3202.
The Enhanced Vegetation Index (EVI) was developed by DeFries, R., & Townshend, J. R. G. The formula provided can be attributed to Huete, A. R., et al. (2002) in the paper titled "Overview of the radiometric and biophysical performance of the MODIS vegetation indices".
Treitz, P., & Rogan, J. (2004). Remote sensing for mapping and monitoring land-cover and land-use change—an introduction. Progress in Planning, 61, 269-279.
Vasuki, Y. (2019). The spatial-temporal patterns of land cover changes due to mining activities in the Darling Range, Western Australia: A visual analytics approach. Ore Geology Reviews, 108, 23-32.
Wardlow, B. D., & Egbert, S. L. (2010). A comparison of MODIS 250-m EVI and NDVI data for crop mapping: a case study for southwest Kansas. International Journal of Remote Sensing, 31(3), 805-830.
Watkins, C. B., Nock, J. F., Fellman, J. K., & Whitaker, B. D. (2002). A summary of physiological processes or disorders in fruits, vegetables, and ornamental products that are delayed or decreased, increased, or unaffected by application of 1-methylcyclopropene (1- MCP). Department of Horticulture, Cornell University, Ithaca, New York 14853.
Weil, G., Lensky, I. M., Resheff, Y. S., & Levin, N. (2017). Optimizing the timing of unmanned aerial vehicle image acquisition for applied mapping of woody vegetation species using feature selection. Remote Sensing, 9(11).
Wilson, P. G., & Waterhouse, J. T. (1982). Tristaniopsis merguensis (Griff.). Australian Journal of Botany, 30, 435.
Wu, C., et al. (2017). Land surface phenology derived from normalized difference vegetation index (NDVI) at global FLUXNET sites. Agricultural and Forest Meteorology, 233, 171–182.
Wulandari, N. (2020). Using the NDVI (Normalized Difference Vegetation Index) and SAVI (Soil Adjusted Vegetation Index) Methods for Check Availability Green Open Space To Meet Oxygen Needs (Case Study: City Yogyakarta) [Master's thesis, Malang National Institute of Technology].
Yano, K., & Takaki, M. (2005). Mycorrhizal alleviation of acid soil stress in the sweet potato (Ipomoea batatas). Soil Biology and Biochemistry, 37(8), 1569-1572.
74
Yarli, N. (2011). Ecology of 'Pelawan Tree' (Tristaniopsis merguensis Griff.) as a Host of 'Pelawan Fungi' in Central Bangka Regency [Master's thesis, Bogor Agricultural University].
Yeom, J., Jung, J., Chang, A., Ashapure, A., Maeda, M., Maeda, A., & Landivar, J. (2019). Comparison of Vegetation Indices Derived from UAV Data for Differentiation of Tillage Effects in Agriculture. Remote Sensing, 11, 1548.
Yin, J., Dong, J., Hamm, N. A., Li, Z., Wang, J., Xing, H., & Fu, P. (2021). Integrating remote sensing and geospatial big data for urban land use mapping: A review. International Journal of Applied Earth Observation and Geoinformation, 103, 102514.
Yu, L., Liang, L., Wang, J., Zhao, Y., Cheng, Q., Hu, L., et al. (2014). Meta-discoveries from a synthesis of satellite-based landcover mapping research. International Journal of Remote Sensing, 35(13), 4573-4588.
Yunianto, B. (2009). A Study on the Problems of Tin Mining in the Bangka Belitung Islands Province as Input for National Mining Policy. Mineral and Coal Technology, 5, 97-113.
Zhang, H., Schroder, J. L., Fuhrman, J. K., Basta, N. T., Storm, D. E., & Payton, M. E. (2005). Path and multiple regression analyses of phosphorus sorption capacity. Soil Science Society of America Journal, 69, 96-106.
Zheng, G., & Moskal, L. M. (2009). Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors. Sensors, 9, 2719-2745.
75