| 研究生: |
鄭凱文 Zheng-Kai Wen |
|---|---|
| 論文名稱: |
考量NAPL源區與溶解相污染團同時整治的地下水含氯溶劑污染物與其降解產物多物種傳輸解析解模式 |
| 指導教授: |
陳瑞昇
Jui-Sheng Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 解析解模式 、含氯有機溶劑 、污染源整治 、移流-延散方程式 、多物種傳輸 |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
含氯有機溶劑為地下水中常發現的污染物,其中四氯乙烯及三氯乙烯為台灣及其他先進工業化國家地下水污染場址中常見的含氯有機污染物。過去研究顯示,同時進行污染源區以及溶解相污染團的整治可以更直接且有效的利用有限的資源進行地下水污染整治。然而,過去大多數的污染整治評估模式,都只適用於原始污染物(母物種)和它的降解的副產物(子物種)採用相同的遲滯因子。本研究提出了一個可以同時考慮污染源區以及溶解相污染團的含氯有機溶劑地下水污染整治評估全新的解析解模式,模式可以考慮每一個污染物有不同的遲滯因子。所發展的模式與文獻中的半解析解比較,結果顯示兩者非常的吻合,確認解析解與其計算FORTRAN程式的正確性與準確性。然後,應用所開發的解析解模式探討在進行整治工作後,遲滯因子對溶解相污染團的遷移影響。本研究所開發的模式可以更深入的了解可能的污染場址現地整治技術與整治管理方針,以各種整治技術的組合對於地下水污染整治成效的影響,並量化這些整治方法的效益。
Chlorinated solvents are the most common groundwater contaminants. The PCE (tetrachloroethene) and TCE (trichloroethene) are the most common chlorinated solvents pollutants in Taiwan and other advanced industrialized countries. Research shows that remediation technology applications to coupled source and plume can directly lead to more efficient use of limited resource. Most of the remediation evaluation models are applicable for the field situations that the contaminant and degradation byproducts have identical retardation factors. In this study, we propose a novel analytical model that couples source and dissolved plume zone remediation of groundwater contaminated with chlorinated solvents. The biggest development of this model will be valid for different retardation factors for each individual species. The correctness of the mathematical model and its auxiliary FORTRAN computer program code are established with excellent agreements of simulated downgradient plume concentration of all contaminants produced from the derived analytical model and a semi-analytical model available in the literature. Subsequently, the developed analytical model is used to illustrate how the retardation factors affect downgradient plume migration after remedial efforts. The developed model is used to better understand the impacts of various combination of possible remedial technologies and management decisions on the subsurface contamination and quantify the benefit of these treatment technology.
Aziz, C. E., Newell, C. J., Gonzales, J.R., Hass P., Clement, T. P., and Sun, Y., “BIOCHLOR-Natural attenuation decision support system v1.0, User’s Manual”, US EPA Report, EPA 600/R-00/008, 2000.
Batu, V., “A generalized two-dimensional analytical solution for hydrodynamic dispersion in bounded media with the first-type boundary condition at the source”, Water Resour. Res., 25, 1125-1132, 1989.
Bauer, P., Attinger, S., and Kinzelbach, W., “Transport of a decay chain in homogeneous porous media: analytical solutions”, J. Contam. Hydrol., 49, 217-239, 2001.
Carr, E., “Generalized semi-analytical solution for coupled multispecies advection-dispersion equations in multilayer porous media”, Appl. Math. Model., 94, 87-97, 2021.
Chen, J. S., Ni, C. F., Liang, C. P., and Chiang, C. C., “Analytical power series solution for contaminant transport with hyperbolic asymptotic distance-dependent dispersivity”, J. Hydrol., 362, 142-149, 2008a.
Chen, J. S., Ni, C. F., and Liang, C. P., “Analytical power series solutions to the two-dimensional advection-dispersion equation with distance-dependent dispersivities”, Hydrol. Process., 22, 670-4678, 2008b.
Chen, J. S., Chen, J. T., Liu, C.W., Liang, C. P., and Lin, C. M., “Analytical solutions to two-dimensional advection-dispersion equation in cylindrical coordinates in finite domain subject to first and third-type inlet boundary conditions”, J. Hydrol., 405, 522-531, 2011.
Chen, J. S., Lai, K. H., Liu, C. W., and Ni, C. F., “A novel method for analytically solving multi-species advective-dispersive transport equations sequentially coupled with first-order decay reactions”, J. Hydrol., 420-421, 191-204, 2012a.
Chen, J. S., Liu, C.W., Liang, C. P., and Lai, K. H., “Generalized analytical solutions to sequentially coupled multispecies advective-dispersive transport equations in a finite domain subject to an arbitrary time-dependent source boundary condition”, J. Hydrol., 456-457, 101-109, 2012b.
Chen, J. S., Liang, C. P., Liu, C. W., and Li, L. Y., “An analytical model for simulating two-dimensional multispecies plume migration”, Hydrol. Earth Sys. Sci., 20, 733-753, 2016a.
Chen, J.S., Hsu, S.Y., Li, M.H., and Liu, C.W., “Assessing the performance of a permeable reactive barrier-aquifer system using a dual-domain solute transport model”, J. Hydrol., 543, 849-860, 2016b.
Chen, J.S., Ho, Y.C., Liang, C.P., Wang, S.W., Liu, C.W., “Semi-analytical model for coupled multispecies advective-dispersive transport subject to rate-limited sorption”, J. Hydrol., 579, 124-164, 2019a.
Chen, J.S., Liang, C.P., Chang, C.H., and Wan, M.H., “Simulating three-dimensional plume migration of a radionuclide decay chain through groundwater”, Energies., 12, 37-40, 2019b.
Cho, C. M., “Convective transport of ammonium with nitrification in soil”, Can. J. Soil Sci., 51, 339-350, 1971.
Falta, R.W., P.S.C. Rao and N. Basu., “Assessing the impacts of partial mass depletion in DNAPL source zones: I. Analytical modeling of source strength functions and plume response”, J. Contam. Hydrol., 78, 259-280, 2005a.
Falta, R.W., N. Basu and P.S.C. Rao., “Assessing the impacts of partial mass depletion in DNAPL source zones: II. Coupling source strength functions to plume evolution”, J. Contam. Hydrol., 79, 45-46, 2005b.
Falta, R.W., Stacy, M.B., Ahsanuzzaman, W.M., and Earle, R.C., “Remediation Evaluation Model for Chlorinated Solvents (REMChlor)”, EPA /600/C-08/001, 2007.
Kreft, A., and Zuber, A., “Comment on “flux averaged and volume averaged concentrations in continuum approaches to solute transport” ”, Water Resources Research, 22, 1157-1158, 1986.
Lyu, C., Bjerg, P.L., Zhang, F., and Broholm, M.M., “Sorption of chlorinated solvents and degradation products on natural clayey tills”, Chemosphere 83(11), 1467-1474, 2011.
Liao, Z.Y., Suk, H., Liu, C.W., Liang, C.P., Chen, J.S., “Exact analytical solutions with great computational efficiency to three-dimensional multispecies advection-dispersion equations coupled with a sequential first-order degradation reaction network”, Advances in Water Resources (submitted), 2021.
NRC (National Research Council), Contaminants in the Subsurface: Source Zone Assessment, National Academics Press, Washington, DC, USA, 333p, 2005.
Parker, J.C. and van Genuchten, M.Th., “Flux-averaged and volume-averaged concentrations in continuum approaches to solute transport”, Water Resources Research, 20, 866-872, 1984.
Parlange, J.Y., Barry, D.A. and Starr. J.L., “Comments on “Boundary conditions for displacement experiments through short laboratory soil columns” ”, Soil Science Society of America Journal, 49, 1325, 1985.
Pérez Guerrero, J. S., Pimentel, L. G. G., Skaggs, T. H., and van Genuchten, M. T., “Analytical solution for multi-species contaminant transport subject to sequential first-order decay reactions in finite media”, Transport Porous Med., 80, 357-373, 2009.
Srinivasan, V. and Clememt, T. P., “Analytical solutions for sequentially coupled one-dimensional reactive transport problems-Part I: Mathematical derivations”, Adv. Water Resour., 31, 203-218, 2008a.
Srinivasan, V. and Clememt, T. P., “Analytical solutions for sequentially coupled one-dimensional reactive transport problems-Part II: Special cases, implementation and testing”, Adv. Water Resour., 31, 219-232, 2008b.
Stroo, H.F., Lesson, A., Marqusee, J.A., Johnson, P.C., Ward, C.H., Kavanaugh, M.C., Sale, T.C., Newell, C.J., Pennel, K.D., Lebrón, C.A., Unger, M., “Chlorinated ethene source remediation: lessons learned”, Environ. Sci & Tehno., 46, 6438-6447, 2012.
Sudicky, E. A., Hwang, H. T., Illman, W. A., and Wu, Y. S., “A semi-analytical solution for simulating contaminant transport subject to chain-decay reactions”, J. Contam. Hydrol., 144, 20-45, 2013.
Suk, H., “Developing semianalytical solutions for multispecies transport coupled with a sequential first-order reaction network under variable flow velocities and dispersion coefficients”. Water Resour. Res., 49, 3044-3048, 2013.
Suk, H., “Generalized semi-analytical solutions to multispecies transport equation coupled with sequential first-order reaction network with spatially or temporally variable transport and decay coefficients”, Adv. Water Resour, 94, 412-423, 2016.
Sun, Y. and Clement, T. P., “A decomposition method for solving coupled multi-species reactive transport problems”, Transport Porous Med., 37, 327-346, 1999.
van Genuchten, M.Th., Parker, J.C., “Boundary conditions for displacement experiments through short laboratory soil columns”, Soil Science Society of America Journal, 48, 703-708, 1984.
van Genuchten, M. T., “Convective-dispersive transport of solutes involved in sequential first-order decay reactions”, Comput. Geosci., 11, 129-147, 1985.