| 研究生: |
林泓濱 Hung-Ping Lin |
|---|---|
| 論文名稱: |
模糊滑動控制使用適應性方法應用於倒單擺系統之研究 Application of Fuzzy Sliding Mode Controller Via Adaptive Method in Inverted Pendulum Systems |
| 指導教授: |
鍾鴻源
Hung-Yuan Chung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 模糊滑動控制 、倒單擺系統 、適應性方法 |
| 外文關鍵詞: | Adaptive Method, Fuzzy Sliding Mode Controller, Inverted Pendulum Systems |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
模糊滑動控制使用適應性方法應用於倒單擺系統之研究
摘 要
在本篇論文中,針對單輸入單輸出的非線性系統與多輸入多輸出的非線性系統分別設計適應性模糊邏輯控制器並以李阿普若夫Lyapunov穩定定理證明系統的穩定性,並推導出用來調整後件部歸屬函數參數的適應性演算法。在單輸入單輸出非線性系統中將介紹一結合理論分析與物理現象為基礎的解耦滑動模式控制器。運用去耦的概念,可將上述系統的各個子系統分開考慮,然後再利用一媒介變數(intermediate variable)來傳遞子系統間的訊息。如此一來,不需要將整個系統轉換成標準形式,只要用其中一個子系統的滑動模式控制器做為基底,再利用媒介變數所傳來的訊息調整滑動模式控制器的輸出,就可以控制整個系統。在多輸入多輸出非線性系統中也是藉由Lyapunov穩定定理證明系統的穩定性,並推導出用來調整後件部歸屬函數參數的適應性演算法,在這過程需考慮子系統彼此的交接項。這些非線性系統同時也考量了盲區(dead zone)的設計讓所推導出來的適應律更具有強健性。最後將所設計出來的控制器應用於倒單擺系列系統(如單軸滑車倒單擺、雙軸串聯滑車倒單擺、彈簧連結雙軸倒單擺系統、二維倒單擺系統)。
Application of Fuzzy Sliding Mode Controller Via Adaptive Method in Inverted Pendulum Systems
Abstract
The paper will address the problem of controlling an unknown single-input-single-output (SISO) and multi-input-multi-output (MIMO) nonlinear system. A fuzzy sliding mode controller (FSMC) is used to approximate the equivalent control via an on-line fuzzy adaptation scheme, and the hitting control is appended to show that the proposed FSMC control with dead zone can result in a stable closed-loop system. This scheme also provides the designers flexibility to design and to implement the fuzzy rule base without domain experts and without mathematical model. The robust adaptive scheme is shown to be able to guarantee that the output tracking error can converge to a residual set ultimately in inverted pendulum systems (single-inverted pendulum system、double-inverted pendulum system、spring-linked two cart-pole systems 、two-dimensional inverted pendulum system).
參考文獻
[1] C. L. Chen, P. C. Chen and C. K. Chen, “Analysis and design of fuzzy control system,” Fuzzy Sets Syst., vol. 57, no. 2, pp. 125-140, 1993.
[2] C. C. Lee, “Fuzzy logic in control systems: fuzzy logic controller-Part I,” IEEE Trans. Systems Man Cybernet., vol. 20, pp. 404-418, 1990.
[3] C. M. Lim and T. Hiyama, “Application of fuzzy logic control to a manipulator,” IEEE Trans. Robotics Automat., vol. 7, pp. 688-691, 1991.
[4] D. P. Filev and R. R. Yager, “On the analysis of fuzzy logic controllers,” Fuzzy Sets Syst., vol. 68, pp. 39-66, 1994.
[5] E. H. Mamdani, “Applications of fuzzy algorithms for simple dynamic plants,” Proc. IEE, vol. 121, pp. 1585-1588, 1974.
[6] G. C. Hwang and S. C. Lin, “A stability approach to fuzzy control design for nonlinear systems,” Fuzzy Sets Syst., vol. 48, pp. 279-287, 1992.
[7] G. Bartolini, E. Punta and T. Zolezzi, “Simplex methods for nonlinear uncertain sliding-mode control,” Automatic Control, IEEE Transactions on, vol. 49, no. 6, pp. 922-933, 2004.
[8] J. K. Uk and K. Hoon, “Chaotic behaviors in fuzzy dynamic systems: “fuzzy cubic map”,” Fuzzy Systems Symposium, 1996. ''Soft Computing in Intelligent Systems and Information Processing'', pp. 314-319, 1996
[9] J. C. Lo and Y. H. Kuo, “Decoupled fuzzy sliding-mode control,” IEEE Trans. Fuzzy Syst., vol. 6, no. 3, pp. 426-435, 1998.
[10] J. E. Slotine and W. Li “Applied nonlinear control,” Englewood Cliffs, NJ: Prentice-Hall, 1991.
[11] J. Yu, W. Gu and Y. Zhang, “New adaptive fuzzy sliding-mode control system for SISO nonlinear system,” Intelligent Control and Automation, Fifth World Congress on, vol. 2, pp. 1196-1199, 2004.
[12] J. Ackermann and V. Utkin, “Sliding mode control design based on Ackermann''s formula,” Automatic Control, IEEE Trans. on, vol. 43, no. 2, pp. 234-237, 1998.
[13] J. S. Glower and J. Munighan, “Design fuzzy controllers from a variable structures standpoint,” IEEE Trans. Fuzzy Syst., vol. 5, no. 1, pp. 138-144, 1997.
[14] J. Wang, A. B. Rad and P. T. Chan, “Indirect adaptive fuzzy sliding mode control: Part I: fuzzy switching,” Fuzzy Sets and Sys., vol. 122, no. 1, pp. 21-30, 2001.
[15] K. S. Ray and D. D. Majumder, “Application of circle criterion for stability analysis of SISO and MIMO systems associated with fuzzy logic controller,” IEEE Trans. Syst., Man, Cybern., vol. 17, pp. 345-349, 1984.
[16] K. D. Young, V. I. Utkin and U. Ozguner, “A control engineer''s guide to sliding mode control,” Control Systems Technology, IEEE Trans. on, vol. 7, no. 3, pp. 328-342, 1999.
[17] K. Furuta and Y. Pan, “Variable structure control with sliding sector Automatica, vol. 36, no. 2, pp. 211-228, 2000.
[18] L. X. Wang “Fuzzy systems are universal approximation,” Proc. IEEE Internat Conf. Fuzzy Syst., vol. 22, pp.1163-1170, 1992.
[19] L. Ying, Z. Jingxiang, F. Xi, Z. Xinzheng, L. Xiuhua, “The self-adjustable fuzzy sliding mode control for AC speed drive systems,” American Control Conference, vol. 5, pp. 28-30, 2000.
[20] Matlab user’s guide, “Control System Toolbox User’s Guide,” Natick, MA: MathWorks, 1992.
[21] M. Sugeno, “Industrial Application of Fuzzy Control,” Amsterdam, The Netherlands: Elsevier, 1995.
[22] R. Palm, “Robust control by fuzzy sliding mode,” Automatica, vol. 30, no. 9, pp. 1429-1437, 1994.
[23] R. G. Berstecher, R. Palm and H. D. Unbehauen, “An adaptive fuzzy sliding-mode controller,” Industrial Electronics, IEEE Trans. on, vol. 48, no. 1, pp. 18-31, 2001.
[24] S. C. Lin and Y. Y. Chen, “Design of adaptive fuzzy sliding mode for nonlinear system control,” in Proc. 3rd IEEE Conf. Fuzzy Syst., IEEE World Congress Computat. Intell., vol. 1, pp. 35-39, 1994.
[25] S. W. Kim and J. J. Lee, “Design of a fuzzy controller with fuzzy sliding surface,” Fuzzy Sets Syst., vol. 71, pp. 359-367, 1995.
[26] S. Galicher and L. Foulloy, “Fuzzy controllers: synthesis equivalence,” IEEE Trans. Fuzzy Syste., vol. 3, pp. 140-148, 1995.
[27] T. Chai and S. Tong, “Fuzzy direct adaptive control for a class of nonlinear systems,” Fuzzy Sets Syst., vol. 103, pp. 379-87, 1999.
[28] U. S. Park, J. H. Kim and S. J. Kim, J. W. Choi and J. S. Kim, “Development of a parallel inverted pendulum system and its control,” SICE Annual, 1999. 38th Annual Conference, pp. 943-948, 1999.
[29] V. I. Utkin, “Variable structure systems with sliding mode: a survey,” IEEE Trans. Automat Contr., vol. 2, pp.212-22, 1977.
[30] W. S. Lin and C. S. Chen, “Adaptive fuzzy sliding mode controller design for nonlinear MIMO systems,” Systems, Man, and Cybernetics, 2001 IEEE International Conference on, vol. 4, pp. 2232 -2238, 2001.
[31] X. Yu, Z. Man, and B. Wu, “Design of fuzzy sliding-mode control systems,” Fuzzy Sets Syst., vol. 95, no. 3, pp. 295-306, 1998.
[32] X. J. Zeng and M. G. Singh, “Approximation theory of fuzzy system SISO case,” IEEE Trans. Fuzzy Syst., vol. 2, pp. 162-76, 1994.
[33] Y. R. Hwang and M. Tomizuka, “Fuzzy smoothing algorithms for variable structure systems,” IEEE Trans. Fuzzy Syst., vol. 2, pp. 277-284, 1994.
[34] Z. M. Yeh, “Adaptive multivariable fuzzy logic controller,” Fuzzy Sets Syst., vol. 86, no. 1, pp. 43-60, 1997.
[35] 王文俊, 認識Fuzzy, 全華科技, 2000.
[36] 周鵬程, 遺傳演算法原理與應用-活用Matlab, 全華科技, 2001.
[37] 張智星, Matlab 程式設計與應用, 清蔚科技, 2000.