跳到主要內容

簡易檢索 / 詳目顯示

研究生: 邱永毅
Yuan-yi Chiu
論文名稱: 血清素受體2A和2B分別參與調控由完全弗氏劑或血清素所引發的熱痛覺敏感和機械性痛覺敏感
The roles of 5-HT2A and 5-HT2B in CFA- or 5-HT-induced thermal and mechanical hyperalgesia
指導教授: 孫維欣
Wei-Hsin Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 生命科學系
Department of Life Science
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 79
中文關鍵詞: 血清素血清素受體2A血清素受體2B機械性痛覺敏感熱痛覺敏感
外文關鍵詞: 5-HT, 5-HT2A, 5-HT2B, mechanical hyperalgesia, thermal hyperalgesia
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當我們受傷時,身體的周邊組織會釋放出發炎調節因子使得傷害性接受器被活化和敏感,造成發炎性疼痛的產生。血清素是一種重要的發炎調節因子,會被周邊組織的血小板和肥大細胞所釋放出來,參與在疼痛以及痛覺敏感現象。先前研究發現血清素受體2B/2C抑制劑,會抑制由血清素所引發的機械性痛覺敏感現象,但並不能抑制熱痛覺敏感現象。然而,目前依然不清楚是透過何種訊號傳遞路徑來調控血清素引發的機械性痛覺敏感現象,以及哪一個血清素受體調控熱痛覺敏感現象。在我的實驗結果發現,血清素受體2B是透過磷脂酶Cβ-蛋白質激酶Cε路徑,調控血清素引發的機械性痛覺敏感現象,並且辣椒素受體1也參與在其中調控。血清素受體2B參與完全弗氏佐劑所引發的機械性痛覺敏感現象前期。血清素所引發的熱痛覺敏感現象,是由血清素受體2A透過磷脂酶Cβ-蛋白質激酶Cε路徑所調控的。


    Following tissue damage, peripheral tissues release inflammatory mediators that activate and sensitize the nociceptors, inducing inflammatory pain. Serotonin (5-HT), one of the important inflammatory mediators, is released from platelets and mast cells and involved in pain and hyperalgesia. Previous studies have found that 5-HT2B/2C antagonist inhibits 5-HT-induced mechanical but not thermal hyperalgesia. However, it remains unclear which signaling pathways are involved in 5-HT-induced mechanical hyperalgesia and which 5-HT receptor mediates thermal hyperalgesia. I have found that 5-HT2B mediated 5-HT-induced mechanical hyperalgesia through phospholipase Cβ (PLCβ)-protein kinase Cε (PKCε) pathway. It was likely due to regulation of TRPV1. 5-HT2B is involved in CFA-induced mechanical hyperalgesia in the early phase. 5-HT-induced thermal hyperalgesia was mediated by 5-HT2A-Gq-PKCε pathway.

    中文摘要 i Abstract ii 目錄 iv 圖目錄 vi 第一章 緒論 1 1.1痛覺 (Pain) 2 1.2痛覺訊息傳遞的過程 (Nociception) 2 1.3 發炎性疼痛 (Inflammatory pain) 3 1.4血清素引發的痛覺過敏 4 1.5血清素受體的分類與途徑 5 1.6與痛覺敏感相關的血清素受體 6 1.6.1 血清素受體1A (5-HT1A) 6 1.6.2 血清素受體2A (5-HT2A) 6 1.6.3 血清素受體2B (5-HT2B) 7 1.6.4 血清素受體3A (5-HT3A) 7 1.6.5 血清素受體4 (5-HT4) 8 1.6.6 血清素受體7 (5-HT7) 8 1.7 與痛覺敏感相關的離子通道 8 1.7.1 辣椒素受體1 (Transient receptor potential vanilloid channel 1, TRPV1) 8 1.8研究動機與目的 9 第二章 材料與方法 11 2.1實驗材料 12 2.1.1 細胞株、菌株 12 2.1.2 實驗用動物 12 2.1.3 藥品 12 2.2實驗方法 13 2.2.1 勝任細胞的製備 13 2.2.2 大腸桿菌轉型作用 (Transformation): 13 2.2.3 細菌培養 14 2.2.3.1菌液培養: 14 2.2.3.2 菌種保存: 14 2.2.4質體DNA製備 14 2.2.4.1質體小量製備 (Mini-prep): 14 2.2.4.2 質體大量製備 (Midi-prep): 15 2.2.4.3 Agarose gel的製備及電泳質體DNA檢測: 16 2.2.5痛覺行為實驗 16 2.2.5.1 機械性痛覺行為實驗 (Touch test) 16 2.2.5.2 熱痛覺行為實驗 (Plantar test) 17 2.2.6 繼代細胞培養 (Subculture) 17 2.2.7 轉染試驗 (Transfection) 18 2.2.8 鈣離子分析 (Single cell calcium imaging) 18 2.2.8.1人類胚胎腎臟細胞前處理 18 2.2.8.2鈣離子分析 19 2.2.9 統計分析 (Statistics) 19 第三章 結果 20 3.1血清素受體2B或2B/2C的抑制劑可抑制血清素受體2B引發的胞內鈣離子增加 21 3.2 血清素引發的機械性痛覺敏感可以由血清素受體2B以及Gq protein路徑下游磷脂酶Cβ和蛋白質激酶Cε 抑制劑給抑制 22 3.3 抑制辣椒素受體1可以抑制辣椒素或血清素引發的機械性痛覺敏感現象 24 3.4血清素受體2A抑制劑可以抑制血清素受體2A引發的胞內鈣離子增加 25 3.5血清素引發的熱痛覺敏感現象可以由血清素受體2A以及Gq protein路徑下游磷脂酶Cβ和蛋白質激酶Cε 抑制劑給抑制 25 3.6血清素受體1A與血清素受體3A抑制劑可以分別抑制血清素受體1A與血清素受體3A引發的胞內鈣離子增加 27 3.7 血清素引發的熱痛覺敏感現象,不能被血清素受體1A或血清素受體3A選擇性的抑制劑給抑制 27 3.8 抑制辣椒素受體1可抑制辣椒素或血清素引發的熱痛覺敏感現象 28 3.9 血清素受體2B參與完全弗氏佐劑引發的機械性痛覺敏感現象 (前期),血清素受體2A參與在完全弗氏佐劑引的熱痛覺敏感現象 29 第四章 討論 31 4.1血清素受體2B會經由磷脂酶Cβ和蛋白質激酶Cε路徑,以及透過辣椒素受體1,參與調控血清素所引發的機械性痛覺敏感 32 4.2 血清素引發的熱痛覺敏感現象,是由血清素受體2A參與調控並且經由磷脂酶Cβ和蛋白質激酶Cε路徑 33 第五章 文獻參考 38

    Basbaum AI, Bautista DM, Scherrer G, Julius D (2009) Cellular and Molecular Mechanisms of Pain. Cell 139 (2):267-284.
    Bileviciute I, Lundeberg T, Ekblom A, Thendorsson E (1993) Bilateral changes of substance P-, neurokinin A-, calcitonin gene-related peptide- and neuropeptide Y-like immunoreactivity in rat knee joint synovial fluid during acute monoarthritis. Neuroscience Letters 153:37-40.
    Bileviciute I, Stenfors C, Thendorsson E, Lundeberg T (1998) Unilateral injection of calcitonin gene-related peptide (CGRP)induces bilateral oedema formation and release of CGRP-likeimmunoreactivity in the rat hindpaw. British Journal of Pharmacology 125:1304-1312.
    Bolcskei K, Helyes Z, Szabo A, Sandor K, Elekes K,Nemeth J, Almasi R, Pinter E, Petho G, Szolcsanyi J (2005) Investigation of the role of TRPV1 receptors in acute and chronic nociceptive processes using gene-deficient mice. Pain 117:368-376.
    Brain SD (2004) Calcitonin gene-related peptide (CGRP) antagonistsblockers of neuronal transmission in migraine. British Journal of Pharmacology 142:1053-1054.
    Bravo-Hernandez M, Murbartian J, Granados-Soto V (2013) Role of peripheral and spinal 5-HT2B receptors in formalin-induced nociception. Pharmacology, Biochemistry and Behavior 102:30-35.
    Brenchat A, Romero L, Garcia M, Pujol M, Burgueno J, Torrens A, Hamon M, Baeyens JM, Buschmann H, Zamanillo D, Vela JM (2009) 5-HT7 receptor activation inhibits mechanical hypersensitivity secondary to capsaicin sensitization in mice. Pain 141:239-247.
    Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816-824.
    Caterina MJ, Leffler A, Malmberg AB, Martin WJ,Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D (2000) Impaired Nociception and Pain Sensation in Mice Lacking the Capsaicin Receptor. Science 288:306-313.
    Cervantes-Duran C, Guadalupe C. Cantu V, Barragán-Iglesias P, Pineda-Farias JB, Bravo-Hernandez M, Murbartian M, Granados-Soto V (2012) Role of peripheral and spinal 5-HT2B receptors in formalin-induced nociception. Pharmacology, Biochemistry and Behavior 102:30-35.
    Chen X, Bing F, Dai P, Hong Y (2006) Involvement of protein kinase C in 5-HT-evoked thermal hyperalgesia and spinal fos protein expression in the rat. Pharmacology, Biochemistry and Behavior 84:8-16.
    Chen YJ, Huang CW, Lin CS, Chang WH, Sun WH (2009) Expression and function of proton-sensing G-protein-coupled receptors in inflammatory pain. Molecular Pain 5:39-57.
    Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, Harries MH, Latcham J, Clapham Colin, Atkinson K, Hughes SA, Rance K, Grau E, Harper AJ, Pugh PL, Rogers DC, Bingham S, Randall A, Sheardown SA (2000) Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 6783:183-187.
    Decaris E, Guingamp C, Chat M, Philippe L, Grillasca JP, Abid A, Minn A, Gillet P, Netter P, Terlain B (1999) Evidence for neurogenic transmission inducing degenerative cartilage damage distant from local inflammation. Arthritis & Rheumatology 42:1951-1960.
    Doi-Saika M, Tokunaga A, Senba E (1997) Intradermal 5-HT induces Fos expression in rat dorsal horn neurons not via 5-HT3 but via 5-HT2A receptors. Neuroscience Research 29:143-149.
    Dray A (1995) Inflammatory mediators of pain. British journal of Anaesthesia 75:125-131.
    Ernberg M, Lundebergb T, Kopp S (2000) Pain and allodynia/hyperalgesia induced by intramuscular injection of serotonin in patients with ®bromyalgia and healthy individuals. Pain 85:31-39.
    Giordano J, Rogers LV (1989) Peripherally administered serotonin 5-HT3 receptor antagonists reduce inflammatory pain in the rats. European journal of pharmacology 170:83–86.
    Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacology, Biochemistry and Behavior 71:533–554.
    Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413:203-210.
    Larson AA, Brown DR, el-Atrash S, Walser MM (1986) Pain threshold changes in adjuvant-induced inflammation: a possible model of chronic pain in the mouse. Pharmacology Biochemistry and Behavior 24 (1):49-53.
    Lin SY, Chang WJ, Lin CS, Huang CY, Wang HF, Sun WH (2011) Serotonin Receptor 5-HT2B Mediates Serotonin-Induced Mechanical Hyperalgesia. The Journal of Neuroscience 31 (4):1410-1418.
    Loyd DR, Weiss G, Henry MA, Hargreaves KM (2011) Serotonin increases the functional activity of capsaicin-sensitive rat trigeminal nociceptors via peripheral serotonin receptors. Pain 152:2267-2276.
    Loyd DR, Chen PB, Hargreaves KM (2012) Anti-hyperalgesic effects of anti-serotonergic compounds on serotonin- and capsaicin-evoked thermal hyperalgeisa in the rat. Neuroscience 203:207–215.
    Nichols DE, Nichols CD (2008) Serotonin Receptors. Chemical review 108:1614-1641.
    Nicholson R, Small J, Dixon AK, Spanswick D, Lee K (2003) Serotonin receptor mRNA expression in rat dorsal root ganglion neurons. Neuroscience Letters 337:119-122.

    Nishiyama T (2005) Effects of a 5-HT2A receptor antagonist, sarpogrelate on thermal or inflammatory pain. European Journal of Pharmacology 516:18 – 22.
    Ohta T, Ikemi Y, Murakami M, Imagawa M, Otsuguro K, Ito S (2006) Potentiation of transient receptor potential V1 functions by the activation of metabotropic 5-HT receptors in rat primary sensory neurons. J Physiol 576.3:809-822.
    Okamoto K, Imbe H, Morikawa Y, Itoh M, Sekimoto M, Nemoto K, Senba E (2002) 5-HT2A receptor subtype in the peripheral branch of sensory fibers is involved in the potentiation of inflammatory pain in rats. Pain 99:133-143.
    Scholz J, Woolf CJ (2002) Can we conquer pain? Nature Neuroscience 5:1062-1067.
    Steenwinckel JV, Noghero A, Thibault K, Brisorgueil MJ, Fischer J, Conrath M (2009) The 5-HT2A receptor is mainly expressed in nociceptive sensory neurons in rat lumbar dorsal root ganglia. Neuroscience 161:838-846.
    Stills, HF (2005) Adjuvants and antibody production: dispelling the myths associated with Freund's complete and other adjuvants. ILAR Journal 46:280-293.
    Stucky CL, Lewin GR (1999) Isolectin B4-positive and negative nociceptors are functionally distinct. The journal of Neuroscience 19:6497-6505.
    Sugiura T, Bielefeldt K, Gebhart GF (2004) TRPV1 function in mouse colon sensory neurons is enhanced by metabotropic 5-Hydroxytryptamine receptor activation. The Journal of Neuroscience 24 (43):9521–9530.
    Taiwo YO, Levinet JD (1992) Serotonin is a directly-acting hyperalgesic agent in the rat. Neuroscience 48:485-490.
    Tokunaga A, Saika M, Senba E (1998) 5-HT2A receptor subtype is involved in the thermal hyperalgesic mechanism of serotonin in the periphery. Pain 76:349-355.
    Urtikova N,1, Berson N, Steenwinckel JV, Doly S, Truchetto J, Maroteaux J, Pohl M, Conrath M (2012) Antinociceptive effect of peripheral serotonin 5-HT2B receptor activation on neuropathic pain. Pain 153:1320-1331.
    Walder RY, Radhakrishnan R, Loo L, Rasmussen LA, Mohapatra DP, Wilson SP, Sluka KA (2012) TRPV1 is important for mechanical and heat sensitivity in uninjured animals and development of heat hypersensitivity after muscle inflammation. Pain 153:1664-1672.
    Walker KM, Urban L, Medhurst SJ, Patel S, Panesar M, Fox AJ, Mcintyre P (2002) The VR1 antagonist capsazepine reverses mechanical hyperalgesia in models of inflammatory and neuropathic pain. The journal of pharmacology and experimental therapeutics 304:56-62.
    Wu SX, Zhu M, Wang W, Wang YY, Li YQ, Yew DT (2001) Changes of the expression of 5-HT receptor subtype mRNAs in rat dorsal root ganglion by complete Freund's adjuvant-induced inflammation. Neuroscience Letters 307:183-186.
    Zhou Y, Zhou ZS, Zhao ZQ (2001) PKC regulates capsaicin-induced currents of dorsal root ganglion neurons in rats. Neuropharmacology 41:601-608.

    QR CODE
    :::