跳到主要內容

簡易檢索 / 詳目顯示

研究生: 沈世勳
Shih-Xian Sheng
論文名稱: 質子交換膜產氫反應器與自加壓設計性能研究
Hydrogen production by PEM electrolyzer and the design of self-compression performance.
指導教授: 蕭述三
Shu-San Hsiau
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 97
語文別: 中文
論文頁數: 84
中文關鍵詞: 質子交換膜電解器壓力氫氣
外文關鍵詞: pressure, hydrogen, electrolyzer, PEM
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在研究發展一具備質子交換膜之產氫電解器,並設計完整之壓力控制系統,以探討整體設計於高壓之下所能達到之性能增進與儲存效率增益。其主要用途為搭配各種再生能源電力或將市電網路在非高峰期所產生的電力轉換成氫能儲存。
    本研究所推演出來的電解器具備以下優勢: 1. 使用質子交換膜分隔產氫與產氧端,確保所產出氫氣之純度極高,不需建構後段純化系統。2. 藉由自身所產出氣體被收集於反應器內部之固有體積以達到加壓效果,不耗損額外能源於加壓氣體,計算能源轉換效率能更為精確且符合當前節能之設計。3. Multi-stacks之設計可加增多極使產量提升。
    本實驗由熱力學以及電化學理論分析出發,選擇杜邦Nafion 117之質子交換膜提供反應器兩側之氣體分離效果,具有較為強韌之機械強度。並設計出反應器機構,對於氣體收集與當壓力提升的防漏措施,採用抗蝕的O-ring裝置於機構與機構之間,達到完整密閉。有別於燃料電池所發展的流道板,本反應器採用細密網狀白金鈦材質結構達到完整浸潤,達到減少汽泡附著所造成的電解性能與電極網活性之下降之效果。並求實驗操作之可視效果,在最外端以聚碳酸酯製成的耐高壓高溫材質做為視窗以觀察反應,在改變電流密度、濃度、與壓力等參數之下可以即時觀測排氣與迴流狀態。
    藉由實驗所量測到的數據分析顯示,由不同電流密度之下造成不同的電壓響應,主導原因可由電解質濃度、電流密度來做說明:在較低濃度時,電解反應之中的離子載體較低,雖然達到相同的電流密度,但卻須要較高電動勢的能量推動。但在較高濃度時,卻發生反應趨勢的改變,先有較高電動勢推動質子通過交換膜,達到反應電流密度後,響應之電動勢開始下降,亦即整體性能提升。而在高壓反應之下也降低氣泡所造成反應阻抗,而自加壓系統的設計,使能量消耗更加精省。並有交換膜的設計,因氫氧參雜於反應電極附近而造成的還原反應亦被降至最低,反應器性能及能源轉換效率有效提升。


    This research is mainly about developing a hydrogen producing electrolyzer with the Proton Exchange Membrane(PEM), and designing a complete pressure controlling system. Throughout this research, I will discuss the increasing of performance and effectiveness of storage that this design can achieve under a highly pressurized environment. The main purpose is to match with the electric power generated from renewable energy, or to transform electricity generated by Utility Network in non-peak time into a storable Hydrogen energy.
    The electrolyzer in this research accompanied with several advantages. First, the purity of hydrogen is able to get pure hydrogen by utilizing the PEM to separate cathode from anode without building a H2 purification system after reaction. Second, by utilizing self-generated gas, it can pressurize the reacting gaseous body without consuming extra energy. Thus, in calculation, the effectiveness of energy transferring could be fit in with energy saving design. Third, quantity of output will be increased with Multi-stacks.
    This experiment was based on Thermodynamics and Electrochemistry, providing a gaseous separated environment with DuPont’s PEM, Nafion 117, to both sides of the reactor, which can perform a better mechanical strength. Also to develop a interior mechanism to prevent a leak-out under a storage purpose and pressure increasing environment, by using an anti-corrosion O-ring placed amount mechanisms to be completely hermetically sealed. Unlike fuel cells utilizing a flow plate, in order to come to a complete immersion and moistening, this reactor was structured with a dense Platinum-Titanium net.
    This experiment was based on Thermodynamics and Electrochemistry, providing a gaseous separated environment with DuPont’s PEM, Nafion 117, to both sides of the reactor, which can perform a better mechanical strength. Also to develop a interior mechanism to prevent a leak-out under a storage purpose and pressure increasing environment, by using an anti-corrosion O-ring placed amount mechanisms to be completely hermetically sealed. Unlike fuel cells utilizing a runner, in order to come to a complete drench, this reactor was structured with a dense titanium net, that could reduce the decrease of electrolysis performance and electrolysis activity caused by attaching of bubbles. Mean time, in order to reach a visible effects of this experiment, I opened high pressure and high temperature durable window made from Polycarbonate on the surface of the electrolyzer for observation.
    Through the analyzing of experiment data, which can tell that different current density result in different voltage responses. There are two major elements --- electrolyte concentration and current density. Within a lower electrolyte concentration, ion vector was also lower in a reaction. Although it could reach a same current density, there will be more electromotive energy needed to push the reaction. However, within a higher electrolyte concentration environment, a change of the trends of the reaction occurred. First, the higher electromotive force pushes the proton through PEM. Just right after the current density reach a reactable level, the electromotive force of response start to decrease. Not only the entire performance was upgraded, also, the reaction impedance caused by bubbles was decreased under a high pressured react. The design of self-pressuring system saved the cost of energy. More over, reduction reactions caused by the mixture of Hydrogen and Oxygen near the electrode, was also brought to a lowest level owing to the design of PEM, which improved the efficiency of this generator and the effectiveness of energy transferring.

    目錄 第一章 緒論 1 1.1前言 1 1.2製氫方法 6 1.2.1 石化原料裂解法 6 ? 甲烷蒸氣重組法(Steam methane reforming) 6 ? 部分氧化法(Partial Oxidation) 7 1.2.2 水電解法(Water electrolysis) 9 1.2.3 生質產氫法(Biomass) 9 1.2.4 纖維素產氫法 11 1.3 研究動機 12 1.4 研究目的 14 1.5 研究架構與流程 15 第二章 文獻探討與理論分析 17 2.1 文獻探討之導論 17 2.2 水電解的熱力學 20 2.3 組裝材質相關 20 2.4 效率與純度 22 2.5 系統化 22 2.6 與太陽能(PV)或再生能源搭配之可行性 23 2.7 國際計畫 27 第三章 電解器之基本原理與結構 28 3.1 基本原理 28 3.1.1 電解水反應參數研究 28 3.1.1 溫度對電解反應產生的影響 30 3.1.2 壓力對電解反應產生的影響 31 3.2 質子交換膜電解反應器之原件設計與製作 33 3.2.1 電解器架構 33 3.3 實驗設備與方法 37 3.3.1 實驗使用藥品與儀器 37 3.3.1 配製電解液 38 第四章 實驗結果與討論 41 4.1 常壓下之電解器性能研究 41 4.1.1 電解電流與響應電壓 42 4.1.3 電解器中的質傳效應 45 4.2 壓力下電解器性能表現與氣泡所造成影響 49 4.2.1 氣泡在電解質中所造成的阻抗 49 4.2.2 自加壓電解器原理 51 4.2.3 壓力對於電解器性能提升之分析 51 第五章 結論 54 參考文獻 84 表目錄 表1. 能量密度比較表 56 表2. 改變電解電流實驗 56 表3. 改變壓力實驗 58 圖目錄 圖 1. 甲烷蒸氣重組法 59 圖 2 實驗架構與流程圖 60 圖 3. 電解示意圖 61 圖4. 反應器設計圖 62 圖5. 收集槽空間 63 圖6. 不同金屬做為電極所具有之標準電解電流密度 64 圖7. 白金鈦網 65 圖8. 夾持機構 66 圖 9. 恆電位儀 67 圖10. 各零件並列 68 圖11. 實驗操作示意圖 69 圖 12. 25 wt%下不同電解電流之響應電壓 70 圖13. 電解電流0.5安培下各濃度響應電壓 71 圖14. 電解電流1.0安培下各濃度響應電壓 72 圖15. 電解電流1.5安培下各濃度響應電壓 73 圖16. 電解電流2.0安培下各濃度響應電壓 74 圖17. 質傳效應在電解電流改變時趨勢圖 75 圖18. 電壓效率與電流關係圖 76 圖19. 未受氣泡影響 77 圖20. 質傳受到汽泡影響 77 圖21. 電極上受到氣泡影響 78 圖22. 電極受大量氣泡影響而極化 78 圖23. 各壓力下電壓-電流曲線 79 圖24. 高壓狀態下反應器內部 80 圖25. 常壓下電解質富含氣泡呈乳狀 80 圖26. 在1.8V以及2.3V時電解器性能與壓力變化圖 81 圖27. 高壓狀態下有助於電解器性能。 82

    [1]. S.A. Grigoriev, V. I. Porembsky and V. N. Fateev, ”Pure hydrogen production by PEM electrolysis for hydrogen energy” International Journal of Hydrogen Energy Vol. 31, p.171 – 175, (2006).
    [2]. J. Nie, Y. Chen, R. F. Boehm, and S. Katukota “A Photoelectrochemical Model of Proton Exchange Water Electrolysis for Hydrogen Production” Journal of Heat Transfer, Vol. 130 , 042409, (2008).
    [3]. O. Ulleberg, “Modeling of Advanced Alkaline Electrolyzer: a System Simulation Approach”, International Journal of Hydrogen Energy Vol. 28, p21-33, (2003).
    [4]. P. Choi, D. G. Bessarabov, and R. Datta, “A Simple Model for Solid Polymer Electrolyte (SPE) Water Electrolysis”, Solid State Ionics Vol. 175, p535-539, (2004).
    [5]. K. Onda, T. Murakami, T. Takeshi, M. Kobayashi, R. Notu and K. Ito “Performance Analysis of Polymer-Electrolyte Water Electrolysis Cell at a Small-Unit Test Cell and Performance Prediction of Large Stacked Cell”, Journal of Electrochem. Soc. 149(8), A1069-A1078, (2002).
    [6]. K. Onda, T. Kyakuno, K. Hattori and K. Ito “Prediction of Production Energy for High-pressure Hydrogen by High-pressure Water Electrolysis”, Journal of Power Sources Vol. 132, p64-70, (2004).
    [7]. P. Millet, F. Andolfatto and R. Durand, “Design and Performance of a Solid Polymer Electrolyte Water Electrolyzer”, International Journal of Hydrogen Energy, Vol. 21, p87-93, (1996).
    [8]. R. L. LeRoy, C. T. Bowen and D. J. LeRoy, “The Thermodynamics of Aqueous Water Electrolysis”, Journal of Electrochem. Society, Vol. 127, p1954-p1956, (1980).
    [9]. J. M. Gras and P. Spiteri, “Corrosion of stainless steels and nickel based alloys for alkaline water electrolysis”, International Journal of Hydrogen Energy, Vol. 7, p.561-566, (1993).
    [10]. R. A. Engel , “Development of a High Pressure PEM Electrolyzr: Enabling Seasonal Storage of Renewable Energy”, 15th Annual U.S. Hydrogen Conference, Los Angeles, CA, (2004)
    [11]. C. A. Schug, “Operational Characteristics of High-Pressure, High-Efficiency Water-Hydrogen-Electrolysis”, International Journal of Hydrogen Energy, Vol.23, p1113-1120, (1998)
    [12]. W. Kreuter and H. Homann , “Electrolysis: The important energy transformer in a world of sustainable energy ”, International Journal of Hydrogen Energy, Vol.23, p.661-666, (1998).
    [13]. Walt Pyle and Jim Healy, “Reynaldo Cortez Solar hydrogen production by electrolysis”, No39, p.32-38, Home Power, (1994).
    [14]. T. Oi and Y. Sakaki, “Optimum Hydrogen Generation Capacity and Current Density of the PEM-Type Water Electrolyzer Operated Only During the Off-Peak Period of Electricity Demand”, Journal of Power Sources Vol. 129, p229-237. (2004)
    [15]. P. D. Lund, “Optimization of stand-alone photovoltaic systems with hydrogen storage for total energy self-sufficiency”, International Journal of Hydrogen Energy, Vol. 16, p.735-740, (1991).
    [16]. P. A. Lheman, C. E. Chmberlin, G, Pauletto and M. A. Rocheleau , “Operating experience with a photovoltaic-hydrogen energy system. ” , International Journal of Hydrogen Energy, Vol. 22, p.465-470, (1997).
    [17]. S. Galli and M. stefanoni, “Development of a solar -hydrogen cycle in Italy”, International Journal of Hydrogen Energy, Vol. 22, p.453-458, (1997).
    [18]. J. P. Vanhanen, P. S. K. aurnaew, P. D. Lund, and L. M. Manninen, “Simulation of solar hydrogen energy system”, Solar Energy, Vol. 53(3), p.267-278, (1994).
    [19]. M. Kato, S. Maezawa, K. Sato and K. Oguro, “Polymer-electrolyte water electrolysis”, Applied Energy, Vol. 59(4), p.261-271. (1998)
    [20]. M. P. Rzayeva, O. M. Salamov, “Photoelectrical plant for hydrogen and oxygen productions by water electrolysis under pressure”, Renewable Energy, vol. 24, p.319-326, (2001).
    [21]. A. M. Chaparro, J. Soler, M. E. Jose and L. Daza “Testing an Isolated System Powered by Solar Energy and PEM Fuel Cell with Hydrogen Generation”, Fuel Cells Bulletin , p.10-12, (2003).
    [22]. S. P. Cicconardi, E. Jannelli and G. Spazzafumo, “Hydrogen energy storage: Hydrogen and Oxygen storage subsystems”, International Journal of Hydrogen Energy, Vol. 22, p.897-902, (1997).
    [23]. M. Kato, S. Maezawa, and K. Sato, “Polymer-Electrolyte Water Electrolysis”, Applied Energy, Vol. 59, p261-271, (1998).
    [24]. “WE-NET Annual Reports, Subtask 4: Development of Hydrogen Production Technology”, New Energy and Industrial Technology Development Organization, Japan. 1998-2001
    [25]. 胡啟章 “Fundamentals and Methods of Electrochemistry” 五南出版社, (2007)
    [26]. W. Vielstich, A. Lamm, and H. A. Gasteiger, “Handbook of Fuel Cell: Fundamentals, Technology and Applications, Vol. 2, Chichester, England, Hoboken, Wiley. (2003)

    QR CODE
    :::