| 研究生: |
李家維 Jia-wei Li |
|---|---|
| 論文名稱: |
以CuOx/ MnxCe1-xO2觸媒去除揮發性有機污染物-甲醛之研究 Catalytic oxidation of formaldehyde over CuOx/ MnxCe1-xO2 catalysts |
| 指導教授: |
張木彬
Moo-Been Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 甲醛 、揮發性有機物 、室內污染物 、觸媒焚化 、臭氧氧化催化 |
| 外文關鍵詞: | formaldehyde, volatile organic compounds, indoor air pollutant, thermal catalytic oxidation, ozone catalytic oxidation |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究致力於開發低溫、便宜、高效率的氣相揮發性有機物甲醛去除技術,包括觸媒焚化(thermal catalytic oxidation)與臭氧氧化催化(ozone catalytic oxidation)兩種控制技術,分別探討反應溫度、擔體改質、臭氧含量、水氧含量及空間流速對甲醛去除效率的影響。
第一部分利用觸媒焚化法,藉由改質MnxCe1−xO2擔體觸媒,由XRD結果顯示Mn的引入量為x=0.3、0.5時,大多呈現氧化鈰立方螢石型結構晶格,顯示離子半徑較小之錳金屬已滲入螢石型結構晶格中形成結晶度良好的固溶相,其中以Mn0.5Ce0.5O2有最佳活性表現T100= (270~275◦C),為降低操作溫度也利用含浸法方式,將5%CuOx含浸至MnxCe1-xO2擔體上,結果顯示溫度下降40◦C並有最低之T100= (230~235◦C),比起商業擔體5%CuOx/γ- Al2O3之T100必需達305◦C,溫度下降達75~80◦C,顯示本研究開發之觸媒可在中等溫度操作。
第二部分利用臭氧氧化催化法,文獻指出錳系觸媒對於分解氣流中的臭氧,具有較佳的分解效率,由自行製備p型的Mn2O3觸媒於常溫下操作分別有92.1%去除效率,將兩種p型金屬氧化物CeO2、 Mn2O3製備成Mn0.5Ce0.5O2共氧化物觸媒,去除效率則明顯提升至99.2%,因此Mn0.5Ce0.5O2為OZCO法選用之觸媒。利用OZCO法可於[O3]/[HCHO]=3、溫度(T)=25◦C時即有83.3%之去除效率,即達到觸媒焚化法(thermal catalytic oxidation)在185◦C時的效率,顯示OZCO法(ozone catalytic oxidation)可大幅降低觸媒焚化法所需之反應溫度。未添加臭氧情況下,270◦C時甲醛的去除速率為0.222 μmol HCHO/g-cat./s,加入203 ppm 臭氧使甲醛的去除速率大幅提升至1.49 μmol HCHO /g-cat./s,比在沒有臭氧的狀況下高出6.71倍,顯示結合臭氧可有效提高甲醛氧化的能力。80小時觸媒耐久性測試結果顯示,Mn0.5Ce0.5O2觸媒可維持高的甲醛去除率,並且失活情況不明顯。
綜觀而言,臭氧氧化催化法使用綠色、便宜的錳系觸媒材料,搭配適量的臭氧添加即能在低溫條件下、有效氧化氣相甲醛,就工業製程廢氣及室內空氣品質控制而言具實場應用潛力。
The aim of this study is to develop a low-temperature, cost-effective, and energy-saving technology for the destruction of volatile organic compounds (VOCs) such as formaldehyde. The effectiveness of thermal catalytic oxidation (TCO) and ozone catalytic oxidation (OZCO) in removing formaldehyde from gas streams will be studied. Catalytic reactors are constructed to investigate the effects of operating temperature, O3 concentrations, water vapor, and gas hour space velocity on formaldehyde removal efficiency.
In the first part of this study, thermal catalytic oxidation of formaldehyde was investigated using MnxCe1−xO2 catalysts with different Mn/Ce ratios. At x = 0.3 and 0.5, most of manganese was fixed in the fluorite structure of CeO2 to form a solid solution. The best performance of the catalytic activity was found with x=0.5, which has a minimum T100= (270 ~ 275◦C). T100 of HCHO oxidation over Mn0.5Ce0.5O2 (270~275◦C) exceeded that over 5%CuOx/ Mn0.5Ce0.5O2 by about 40 ◦C. On the other hand, T100 of HCHO oxidation over 5%CuOx/γ- Al2O3 was 305◦C. Even though only MnxCe1−xO2 catalysts have high oxidation ability toward HCHO, experimental results indicate that the modified catalysts can be operated at moderate temperatures.
In the second part of this study, complete oxidation of formaldehyde was investigated with OZCO. Ozone decomposition efficiencies of the p-type oxide Mn2O3 is 92.1%. Apparently, the modified catalyst has the highest ozone decomposition efficiency of 99.2%. Therefore, catalytic oxidation of gaseous formaldehyde with ozone over Mn0.5Ce0.5O2 was experimentally carried out with a packed bed reactor to investigate the feasibility of the low-temperature decomposition process. HCHO removal efficiency achieved is 83.3% at 25◦C and [O3]/[HCHO] =3, the same removal efficiency is achieved when TCO is operated at 185◦C. In addition, the removal rate of formaldehyde is 0.222 μmol HCHO/g-cat./s for TCO at 270◦C, while it is significantly raised to 1.49 μmol HCHO/g-cat./s with the OZCO process. Addition of O3 greatly enhanced the catalytic activity of the Mn0.5Ce0.5O2 catalyst toward the oxidation of formaldehyde. With the gas hour space velocity of 10000 hr-1, [O3]/[HCHO] =3 and temperature of 25◦C, high formaldehyde removal efficiency (81.8%) is maintained during the durability test of 80 hours, showing its long-term stability.
Overall, this OZCO process applies eco-friendly, cost-effective manganese oxide catalysts to remove HCHO. Adding appropriate amount of ozone results in the effective removal of formaldehyde at room temperature. It can be employed directly for industrial emissions and indoor air quality control.
Alexandre, B., Eric, P., Laure, P., France, S., Delphine, C., Emmanuel, D., Cedric, B., Chantal, G., “Characterization of a new photocatalytic textile for formaldehyde removal from indoor air”, Applied Catalysis B, Vol. 128, pp. 171-178(2012).
An, N., Yu, Q. S., Liu, G., Li, S. Y., Jia, M. J., Zhang, W. X., “Complete oxidation of formaldehyde at ambient temperature over supported Pt/Fe2O3 catalysts prepared by colloid-deposition method”, Journal of Hazardous Materials , Vol. 186, pp. 1392-1397 (2011).
Chen, D., Qu, Z. P., Shen, S. J., Li, X. Y., Shi, Y., Wang, Y., Fu, Q., Wu, J. J., “Comparative studies of silver based catalysts supported on different supports for the oxidation of formaldehyde”, Catalysis Today , Vol. 175, pp. 338-345(2011).
Dhandapani, B., Oyama, S. T., “Gas phase ozone decomposition catalysts ”, Applied Catalysis B, Vol.11, pp. 129-166(1997).
Dow, W. P., Wang, Y. P. Huang, T. J., “TPR and XRD studies of yttria-doped ceria/γ-alumina-supported copper oxide catalyst”, Applied Catalysis A, Vol. 190, pp. 25-34 (2000).
Einaga, H., Futamura, S., “Catalytic oxidation of benezene with ozone over alumina-supported manganese”, Journal of Molecular Catalysis A, Vol. 227, pp. 304-312(2004).
Einaga, H., Futamura, S., “Oxidation behavior of cyclohexane on alumina-supportd manages oxides with ozone”, Applied Catalysis B, Vol. 60, pp. 49-55(2005).
Gervasini, A., Vezzoli, G. C., Ragaini, V., “VOC removal by synergic effect of combustion catalyst and ozone”, Catalyst today, Vol. 29, pp. 449-455(1996).
Gil, A., Diaz, A., Gandia, L. M., Montes, M., “Influence of the preparation method and nature of the support on the stability of nickel catalysts”, Applied Catalysis A, Vol. 109, pp. 167-179 (1994).
Hao, A., Cheng, D., Guo, Y., Liang, Y., “Support gols catalysts used for ozone decomposition and simultaneous elimination of ozone and carbon monoxide at ambient temperature”, Applied Catalysis B, Vol. 33, pp. 217-222(2001).
Hisahiro, E., Futamura, S., “Catalytic oxidation of benzene in the gas phase over alumina-supported silver catalysts”, Journal of Catalysis, Vol. 227, pp. 302-314 (2004).
Hisahiro, E., Futamura, S., “Effect of water vapor on catalytic oxidation of benzene with ozone on alumina-supported manganese oxides”, Journal of Catalysis, Vol. 243, pp. 446-450 (2006).
Hisahiro, E., Futamura, S., “Oxidation behavior of cyclohexane on alumina-supported”, Journal of Catalysis, Vol. 242, pp. 115-165 (2003).
Hu, C. Q., Zhu, Q. S., Chen, L., Wu, R. F., “CuO-CeO2 binary oxides nanoplates: Synthesis, characterization, and catalytic performance for benzene oxidation”, Materials Research Bulletin, Vol. 44, pp. 2174-2180(2009).
Huang, H. B., Huang, Y. C., “Complete elimination of indoor formaldehyde over supported Pt catalysts with extremely low Pt content at ambient temperature”, Journal of Catalysis, Vol. 280, pp. 60-67(2011).
Imamura, S., Ikebata, M., “Decomposition of ozone on a silver catalyst”, Ind. Eng. Chem. Res, Vol. 30, pp. 271-221 (1911).
Jhon, Q., Jean, G.,Jean, L., “Formaldehyde total oxidation over mesoporous MnOx catalysts”, Catalysis Today , Vol. 176, pp. 277-280(2011).
Kim, S. C., Shim, W. G., “Catalytic combustion of VOCs over a series of manganese oxides catalysts”, Applied Catalysis B, Vol. 98, pp. 180-185(2010).
Konova, P., Stoyanova, M., Naydenov, A., Christoskova, S., Mehandjiev, D., “Catalytic oxidation of VOCs and CO by ozone over alumina supported cobalt oxide”, Applied Catalysis A, Vol. 298, pp. 109-114 (2006).
Li, C. U., Shen, Y. I., Jia, M. L., Sheng, S. S., Adebajo, M. O., Zhu, H. Y., “Catalytic combustion of formaldehyde on gold/iron-oxide catalysts”, Catalysis Communications, Vol. 9, pp. 355-361(2008).
Li, H. F., Zhang, N., Chen, P., Luo, M. F., Lu, J. Q., “High surface area Au/CeO2 catalysts for low temperature formaldehyde oxidation”, Applied Catalysis B, Vol. 1110, pp. 279-285 (2011).
Li, T. Y., Chiang, S. J., Liaw, B. J., Chen, Y. Z., “Catalytic oxidation of benzene over CuO/Ce1−xMnxO2 catalysts”, Applied Catalysis B, Vol. 103, pp. 143-148(2011).
Li, W., Gibbs, G. V, Oyama, S. T., “Mechanism of zoone decomposition on a manganese oxides catalyst. In situ Raman spectroscopy and abinitio molecular orbital calculation”, J. Am. Soc, Vol.120, pp. 9041-9046(1998).
Liu, B. C., Li, C. Y., Zhang, Y. F., Liu, Y., Hu, W. T., Wang, Q., Han, L., Zhang, J., “Investigation of catalytic mechanism of formaldehyde oxidation over three-dimensionally ordered macroporous Au/CeO2 catalyst”, Applied Catalysis B, Vol. 111, pp. 467-475(2012).
Liu, X. S., LU, J. Q., Qian, K., Huang, W. X., Luo, M. F., “A comparative study of formaldehyde and carbon monoxide complete oxidation on MnOx-CeO2 catalysts”, Journal Of Rare Earths , Vol. 27, pp. 417(2009).
Maroni, M., Seifert, B., Lindvall, T., “Indoor air quality –a Comprehensive Referencr Book., “ Elsevier Amsterdam, (1995).
Meera, S., Hugo, D., Douglas, S., Joern, L., William, J., “Quantitative room-temperature mineralization of airborne formaldehyde using manganese oxide catalysts, Vol. 107, pp. 34-41(2011).
Mehandjiev, D., Naydenov, A., Ivanov, G., “Ozone decomposition and CO oxidation over NiMnO3-ilmenite NiMn2O4-spinel catalysys”, Applied Catalysis A, Vol. 206, pp. 13-18(2006).
Mitsui, T. H., Tsutsui, K., Matsui, T. I., Kikuchi, R. U., Eguchi, K. C., “Support effect on complete oxidation of volatile organic compounds over Ru catalysts”, Applied Catalysis B, Vol. 81, pp. 56-63(2008).
Naydenov, A., Stoyanova, R., Mehandjiev, D., “Ozone decomposition benzene and CO oxidation on CeO2”, Applied Catalysis A, Vol. 98, pp. 9-14(1995).
Penko, N., Krassimir, G., Konova, P., Milenova, K., Batakliev, T., Vladimir, G., “Ozone decomposition on Ag/SiO2 and Ag/clinoptilolite catalysts at ambient temperature”, Journal of Hazardous Materials, Vol. 184, pp. 16-19 (2010).
Reed, C., Lee, Y. K., Oyama, S. T., “Structure and oxidation state of silica-supported manganese oxide catalysts and reactivity for acetone oxidation with ozone”, Journal of Physical Chemistry B, Vol. 110, pp. 4207-4216(2006).
Roush, G. C., Walrath, J., “Nasopharymgeal cancer, sinonasal cancer,and occupations related to formaldehyde”, A Case-Control Study. J.Natl. Cancer Inst, Vol. 79, pp. 1221-1224 (1987).
Shen, Y. I., Yang, X. H., Wang, Y. H., Zhang, Y. B., Zhu, H. Y., Gao, J., Gao, M. L., “The states of gold species in CeO2 supported gold catalyst for formaldehyde oxidation”, Applied Catalysis B, Vol. 79, pp. 142-148(2008).
Shen, Y. S., Ku, Y., Chang, M. B., “Treatment of gas-phase volatile organic compounds (VOCs) by the UV/O3 process”, Chemosphere, Vol. 38, pp. 1855-1866(1999).
Takashi, O., “Decomposition of ozone on a silver catalyst”, Ind. Eng. Chem. Res, Vol. 30, pp. 217-221 (1991).
Tang, X. F., Chen, J. L., Huang, H. M., Xu, Y., Shen, W. J., “Pt/MnOx–CeO2 catalysts for the complete oxidation of formaldehyde at ambient temperature”, Applied Catalysis B, Vol. 81, pp. 115-121(2008).
Tang, X. F., Chen, J. L., Li, Y. G., Li, Y., Xu, Y., Xu, W. J., “Complete oxidation of formaldehyde over Ag/MnOx–CeO2 catalysts”, Chemical Engineering Journal, Vol. 118, pp. 119-125(2006).
Tang, X. F., Li, Y. G., Huang, X. M., Xu, Y., Xu, H. Q., Wang, J. G., Shen, W. J., “MnOx–CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: Effect of preparation method and calcination temperature”, Applied Catalysis B, Vol. 62, pp. 265-273(2006).
Tian, H., He, J. H., Liu, L. L., Wang, D. H., Wang, Z. P., Ma, C. Y., “Highly active manganese oxide catalysts for low-temperature oxidation of formaldehyde”, Microporous and Mesoporous Materials, Vol. 151, pp. 397-402(2012).
Walendziewski, J., Kulazynski, M., Trewczynski, J., “Silica-Titania Support for HVOC’s Combustion Catalysts ”, Reaction Kinetics and Catalysis Letters, Vol. 25, pp. 7-16(2001).
Wang, H. C., Liang, H. S., Chang, M. B., “Chlorobenzene oxidation using ozone over iron oxide and manganese oxide catalyst”, Journal of Hazardous Materials, Vol. 186, pp. 1781-1787(2011).
Wang, J. A., Chen, L. F., Li, C. L., “Roles of cerium oxide and the reducibility and recoverability of the surface oxygen species in the CeO2/γ-MgAl2O4 catalysts”, Journal of Molecular Catalysis A, Vol. 139, pp. 315- 323(1999).
Wang, L. F., Zhang, Q., Sakurai, M. K., Kameyama, H. D., “Development of carbon-supported hybrid catalyst for clean removal of formaldehyde indoors”, Catalysis Today , Vol. 12, pp. 17-25(2011).
Wang, L. F., Zhang, Q., Sakurai, M. K., Kameyama, H. D., “Development of a Pt/TiO2 catalyst on an anodic alumite film for catalytic decomposition of formaldehyde at room temperature”, Catalysis Communications, Vol. 8, pp. 2171-2175(2007).
Xing, F., Tianle Z.,Yifei, S., Xiao, Y., “The roles of various plasma species in the plasma and plasma-catalytic removal of low-concentration formaldehyde in air”, Journal of Hazardous Materials, Vol. 196, pp. 380-385(2011).
Yang, X., Zhu, J., Xiao, D., Li, J., Wu, Y., “Effect of Ce on NO direct decomposition in the absence/presence of O2 over La1−xCexSrNiO4 (0≤x≤0.3)”, Journal of Molecular Catalysis A, Vol. 234, pp. 99-105(2005).
Zafar, M. I., Senad, N., “Analysis of formose sugar and formaldehyde by high-performance liquid chromatography”, Journal of Chromatography A, Vol. 1216, pp. 5116-5121(2009).
Zhang, C. B., Hong, H., Tanaka, K. I., “Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature”, Applied Catalysis B, Vol. 65, pp. 37-43(2006).
Zhang, H. Y., Zhu, A. M., Wang, X. K., Wang, Y., Shi, C., “Catalytic performance of Ag-Co/CeO2 catalyst in NO-CO and NO-CO-O2 system”, Catalysis Communications , Vol.8, pp. 612-618(2007).
Zhang, J., Jin, J., Li, C. Y., Shen, Y. I., Han, L., Hu, Z. X., Di, X. W., Liu, Z. L., “Creation of three-dimensionally ordered macroporous Au/CeO2 catalysts with controlled pore sizes and their enhanced catalytic performance for formaldehyde oxidation”, Applied Catalysis B, Vol. 91, pp. 11-20(2009).
Zhang, Y.B., Shen, Y.I., Yang, X.H., Sheng, S.S, Wang, T., “Gold catalysts supported on the mesoporous nanoparticles composited of zirconia and silicate for oxidation of formaldehyde”, Journal of Molecular Catalysis A, Vol. 316, pp. 100-105(2010).
Zhou, L., Zhang, J, Zhang, J. H., Hu, Y. C., Hu, H., “Control over the morphology and structure of manganese oxide by tuning reaction conditions and catalytic performance for formaldehyde oxidation”, Materials Research Bulletin, Vol. 46, pp. 1714-1722(2011).
王厚傳,「以過渡金屬氧化物觸媒與臭氧分解氯苯及戴奧辛之研究」
國立中央大學環境工程研究所程研究所,博士論文,2011。
王俊杰,「以觸媒氧化法處理一氧化氮之研究」,國立中山大學環境工程研究所程研究所,碩士論文,2000。
王嘉河,「銅鈰觸媒在過量氫氣中CO 的選擇性氧化研究」,逢甲大學環境工程研究所程研究所,碩士論文,2003。
朱小蓉,陳郁文,「工業廢氣特殊處理技術」,化工資訊,pp. 68-78,1992。
李定粵,「觸媒的原理與應用」,中正書局, 1990。
周明顯,黃柏仁,鄭文熙,「以蓄熱式觸媒焚化設施處理排氣中揮發性有機物質之理論解析與驗證」,第十五屆空氣污染控制技術研討會論文集,pp. 455-462,1998。
周珮萱, 「 Pd/Ce1 - xYxO2 - δ觸媒進行苯 完全氧化反應之研究」,國立中央大學化學工程與材料工程研究所碩士論文,碩士論文,2011。
洪文雅,「揮發性有機廢氣處理技術簡介」,台灣環保產業雙週刊,pp. 2-6,1994。
洪文雅,「揮發性有機廢氣處理技術簡介」,台灣環保產業雙週刊,pp. 2-6,1994。
洪崇軒,李家偉,林秉毅,涂雅惠,蘇世昌,「應用艙室技術於室內空氣揮發性有機污染物排放係數之推求」,第十九屆空氣污染研討會,pp. 535-657,2002。
臭氧處理程序設計評估技術,工研院化工所,1991
陳冠宏,「以 Cu/ACF 觸媒處理含氨水溶液之研究」,國立中山大學環境工程研究所碩士論文,碩士論文,2003。
陳叡瑜,「室內空氣污染-合板釋出甲醛問題之探討」,行政院國家科學委員會成果報告,pp. 325-357,1996。
廖麗美, 「氧化鐵和氧化鐵-金屬氧化物擔載奈米金觸媒之製備與應用」,國立中央大學環化學工程與材料工程研究所碩士論文,碩士論文,2005。
劉國棟,「VOC管制趨勢展望,工業汙染防治」,第48期,pp. 15-31,1993。
鄭蓉瑛,吳麗珠,陳正堯,「醫療院所甲醛暴露調查研究」,行政院國家科學委員會成果報告,pp. 753-755,2001。
顏駿翔,「添加Mn/γ-Al2O3 於觸媒濕式氧化程序處理2,4-二氯酚水溶液之研究」,國立中山大學環境工程研究所碩士論,碩士論文,2001。